One example of matter could be <em>Light.</em>
The number of mole will be 65.81 mole.
An ideal gas would be one for which both the overall volume of the molecules and even the forces that exist between them are so negligible as to have no influence on the behavior of something like the gas.
Number of ideal gas can be calculated by using the formula:
PV = nRT
where, p is pressure, n is number of mole, R is gas constant and T is temperature.
Given data:
V= 1750
= 1750 L
P = 125,000 p = 1.2 atm
R = 0.082 L /mole kelvin
T = 273+127 = 400 K
Now, put the value of given data in above equation.
1.23atm x 1750L = n x 0.0820atm x Liter/ mole x kelvin x 400K
n = 65.81 mole.
Therefore, the number of mole will be 65.81 mole
To know more about mole
brainly.com/question/21050624
#SPJ4
Answer:
Explanation:
Density is
mass / volume = d
Mass:
840g
Volume:
7 cm x 4 cm x 10 cm = 280 cm^3
840g / 280 cm^3 = 3 g/cm^3
Note that this is occurring at STP, where 22.4L of any gas is equal to 1mol of that gas.
First, convert the liters of O₂ to moles of O₂ using the conversion factor 22.4LO₂ = 1molO₂.
8.6LO₂ × 1molO₂/22.4LO₂
= 8.6/22.4
≈ 0.3839molO₂
Next, convert moles of O₂ to moles of H₂O. In the balanced equation, the coefficients show that there are 2 moles of H₂O for every mole of O₂. So, use the conversion factor 1molO₂ = 2molH₂O.
0.3839molO₂ × 2molH₂O/1molO₂
= 0.3839 × 2
= 0.7678molH₂O
Finally, convert the moles of H₂O to liters of H₂O using the same conversion factor from before, 22.4LH₂O = 1molH₂O.
0.7678molH₂O × 22.4LH₂O/1molH₂O
= 0.7678 × 22.4
≈ 17LH₂O
So, the answer is 17 liters of gaseous water is collected! Note that its rounded to 17 because the measurement given in the problem has 2 sig figs. Hope that helps! :)
Answer:
Explanation:
- overall order is also first order
Since we are told that CH3OH is the solvent for the reaction, as such the rate law equation will only be written for (CH3)3CCl .