Answer:
The metals are on the bottom left in the periodic table, and the nonmetals are at the top right. The semimetals lie along a diagonal line separating the metals and nonmetals. The elements are arranged in a periodic table, which is probably the single most important learning aid in chemistry.
Explanation:
im not sure if there was supposed to options to that question or not
Reduction reactions are those reactions that reduce the oxidation number of a substance. Hence, the product side of the reaction must contain excess electrons. The opposite is true for oxidation reactions. When you want to determine the potential difference expressed in volts between the cathode and anode, the equation would be: E,reduction - E,oxidation.
To cancel out the electrons, the e- in the reactions must be in opposite sides. To do this, you reverse the equation with the negative E0, then replacing it with the opposite sign.
Pb(s) --> Pb2+ +2e- E0 = +0.13 V
Ag+ + e- ---> Ag E0 = +0.80 V
Adding up the E0's would yield an overall electric cell potential of +0.93 V.
P x V = n x R x T
P x 73 = 2.97 x 0.082 x 298
P x 73 = 72.57492
P = 72.57492 / 73
P = 1.0 atm
hope this helps!
To solve this question, you must use the formula: q=mc(change in temperature), where q is heat, m is mass, C is specific heat and temperature change is temperature change. The specific heat for ice is 2.1kJ/Kg x K (given). The change in temperature is 15 degrees Celsius (which you should change to kelvins so you can cancel out units), or 273 + 15 = 288K. The mass is 150 grams, which is 0.15 kg. Now, we can solve for q, heat. We will do this by substituting variables into the formula. After simplifying and cancelling out units, the answer we get is: 90.72kJ.