6.8 is the pH of the solution after 10 ml of 5M NaOH is added.
Explanation:
Data given:
Molarity of C6H5CCOH = 0.100 M
molarity of ca(c6h5coo)2 = 0.2 M
Ka = 6.3 x 10^-5
first pH is calculated of the buffer solution
pH = pKa+ log 10 ![\frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
pKa = -log10[Ka]
pka = -log[6.3 x10^-5]
pKa = 4.200
putting the values to know pH of the buffer
pH = 4.200 + log 10 
pH = 4.200 + 0.3
pH = 4.5 (when NaOH was not added, this is pH of buffer solution)
now the molarity of the solution is calculated after NaOH i.e Mbuffer is added
MbufferVbuffer = Mbase Vbase
putting the values in above equation:
Mbuffer = 
= 
= 0.01 M
molarity or [ A-] = 5M
pH = pKa+ log 10 ![\frac{[A-]}{[HA]}](https://tex.z-dn.net/?f=%5Cfrac%7B%5BA-%5D%7D%7B%5BHA%5D%7D)
pH = 4.200 + log 10 
pH = 4.200+ 2.69
pH = 6.8
Answer: I did the research myself since I couldn’t find the answers.
Physical change:
Wax melting from applied heat
Grinding wheat to make flour
Adding copper with gold to make jewelry
Chemical Reaction:
Growth of a seed into a seedling
Making caramel by burning sugar
Tarnishing of silver
Explanation:
Thanks google
Simple 6L of air times the .21L of O2 = 1.26
Answer : The activation energy for the reaction is, 119.7 J
Explanation :
According to the Arrhenius equation,

or,
![\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7BK_2%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%20R%7D%5B%5Cfrac%7B1%7D%7BT_1%7D-%5Cfrac%7B1%7D%7BT_2%7D%5D)
where,
= rate constant at 271 K
= rate constant at 281 K = 
= activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
= initial temperature = 271 K
= final temperature = 281 K
Now put all the given values in this formula, we get:
![\log (\frac{2K_1}{K_1})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{271K}-\frac{1}{281K}]](https://tex.z-dn.net/?f=%5Clog%20%28%5Cfrac%7B2K_1%7D%7BK_1%7D%29%3D%5Cfrac%7BEa%7D%7B2.303%5Ctimes%208.314J%2Fmole.K%7D%5B%5Cfrac%7B1%7D%7B271K%7D-%5Cfrac%7B1%7D%7B281K%7D%5D)

Therefore, the activation energy for the reaction is, 119.7 J