Answer:
condensation, the process of changing from a gas to a liquid
Answer: Rn :)))) no explanation needed
Given parameters:
First velocity = 2.50m/s
Time of travel = 3s
Second velocity = 1.50m/s
Unknown:
The displacement during the first interval = ?
Velocity is the displacement of a body with time. Displacement is a distance move in a specific direction by a body.
Velocity =
So;
Displacement = Velocity x Time taken
Now input the parameter for the first velocity and time of travel;
Displacement = 2.5 x 3 = 7.5m
The displacement id 7.5m
Answer:
0.0133 A
Explanation:
The time at which B=1.33 T is given by
1.33 = 0.38*t^3
t = (1.33/0.38)^(1/3) = 1.52 s
Using Faraday's Law, we have
emf = - dΦ/dt = - A dB/dt = - A d/dt ( 0.380 t^3 )
Area A = pi * r² = 3.141 *(0.025 *0.025) = 0.00196 m²
emf = - A*(3*0.38)*t^2
thus, the emf at t=1.52 s is
emf = - 0.00196*(3*0.38)*(1.52)^2 = -0.0052 V
if the resistance is 0.390 ohms, then the current is given by
I = V/R = 0.0052/0.390 = 0.0133 A
Velocity of submarine A is vs = 11.0m/s
frequency emitted by submarine A. F = 55.273 × 10∧3HZ
Velocity of submarine B = vO = 3.00m/s
The given equation is
f' = ((V + vO) ((v - vS)) × f
The observer on submarine detects the frequency f'.
The sign of vO should be positive as the observer of submarine B is moving away from the source of submarine A.
The speed of the sound used in seawater is 1533m/s
The frequency which is detected by submarine B is
fo = fs (V -vO/ v +vs)
= 53.273 × 10∧3hz) ((1533 m/s - 4.5 m/s)/ (1533 m/s +11 m/s)
fo = 5408 HZ