Answer:
3.07 Cal/g
Explanation:
Step 1: Calculate the heat absorbed by the calorimeter
We will use the following expression.
Q = C × ΔT
where,
- C: heat capacity of the calorimeter (37.60 kJ/K = 37.60 kJ/°C)
- ΔT: temperature change (2.29 °C)
Q = 37.60 kJ/°C × 2.29 °C = 86.1 kJ
According to the law of conservation of energy, the heat released by the candy has the same magnitude as the heat absorbed by the calorimeter.
Step 2: Convert 86.1 kJ to Cal
We will use the conversion factor 1 Cal = 4.186 kJ.
86.1 kJ × 1 Cal/4.186 kJ = 20.6 Cal
Step 3: Calculate the number of Cal per gram of candy
20.6 Cal/6.70 g = 3.07 Cal/g
<h3>
Answer:</h3>
5.6 Liters
<h3>
Explanation:</h3>
- N.T.P. refers to the standard temperature and pressure (S.T.P).
We need to know that;
- One mole of a gas occupies a volume of 22.4 liters at N.T.P.
In this case;
We have 11 g of CO₂
But, 1 mole of CO₂ occupies 22.4 l at N.T.P.
1 mole of CO₂ = 44 g
Therefore;
44 g of CO₂ = 22.4 liters
What about 11 g ?
= (11 g × 22.4 l)÷ 44 g
= 5.6 l
Therefore, 11 g of CO₂ will occupy a volume of 5.6 liters at N.T.P.
Answer:
CH4
Explanation:
The number of moles of carbon and hydrogen has been given as follows:
C = 0.300 mol
H = 1.20 mol
Next, we divide each mole value by the smallest (0.300)
C = 0.300 ÷ 0.300 = 1
H = 1.20 ÷ 0.300 = 4
The empirical ratio of Carbon and Hydrogen is 1:4, hence, the empirical formula is CH4
Answer:
Both compounds are colorless, so a mixture of them will look transparent. Both molecules are nopolar, therefore they will associate with each other through London interactions, also known as Van del Waals forces or as transient dipole-transient dipole interactions.
Explanation:
..........The answer is B