Answer:
<em>171.5m</em>
Explanation:
The velocity of sound in water = 343m/s
Time taken = 1.00secs
using the formula to calculate the distance
2x = vt
x is the distance
v is the speed of sound
t is the time
x = vt/2
x = 343(1)/2
x = 171.5m
<em>hence their separation 1.00 s after the second object is released is 171.5m</em>
Answer:
The force exerted by the ball on the bat has a magnitude of 100 N and its direction is exactly opposite to that of the force exerted by the bat on the ball.
Explanation:
Recall that Newton's third law tells us that : "For every action, there is an equal and opposite reaction."
Therefore if the bat acts on the ball with a force of 100 N, the ball acts on the bat with a similar magnitude of force (100 N) but direction opposite to the original force.

Answer:
Part a)


Part b)

Explanation:
Part a)
Constant speed by which the student will run is given as

now after some time if student is going to overtake the position of bus
so here the final positions will be same
so we have




so it is

So student will run the total distance



Part b)
Speed of bus when student reach the bus is given as



Answer:increased
Explanation:
It is given that elevator speed is increasing while moving upward i.e.its acceleration is increasing .
This causes the apparent to be increased if measured using weighing machine.
considering upward direction to be positive
N-mg=ma
N=m(g+a)
where N=Normal reaction=Apparent weight
a=acceleration of Elevator
thus you feel as if your weight is increased.
Answer:
Her speed is 9.8 meter per second
Explanation:
Newton's second law states that acceleration (a) is related with force (F) by:
(1)
Here the only force acting on the firefighter is the weight F=mg so (1) is:
Solving for a:

Now with the acceleration we can use the Galileo's kinematic equation:
(2)
With Vf the final velocity, Vo the initial velocity and Δx the displacement, because the firefighter stars from rest Vo=0 so (2) is:

Solving for Vf

