The particles that combined in the middle of the structure best describes neutron as neutron is always present in the middle of atomic structure
Answer:
atoms tend to react in order to gain 8 valence electrons
Explanation:
The octet rule describes the tendency of atoms of elements to react in order to have eight electrons in their valence shell. This is because having eight valence electrons confers stability to the atoms of these elements in the compounds they form.
The octet rule only does not apply to the transition elements or the inner transition elements as only the s and p electrons are involved. the electronic configuration in atoms having an octet is s²p⁶.
For example, sodium atom has one valence electron in its valence shell but a complete octet in the inner shell; it will react with chlorine atom which has seven valence electrons to form a stable compound, sodium chloride by donating its one valence electron in order to have an octet. Similarly, the chlorine atom will then have an octet by accepting the one electron from sodium atom.
The electron configuration for magnesium is 1s22s22p63s2
<h3>Answer:</h3>
Strontium (Sr)
<h3>Explanation:</h3>
The condition given in statement is the presence of two valence electron. Hence, first we found the electronic configuration of given atoms as follow;
Rubidium [Kr] 5s¹
Strontium [Kr] 5s²
Zirconium [Kr] 4d² 5s²
Silver [Kr] 4d¹⁰ 5s¹
From above configurations it is cleared that only Strontium and Zirconium has two electrons in its valence shell.
We also know that s-block elements are more reactive than transition elements due to less shielding effect in transition elements hence, making it difficult for transition metals to loose electrons as compared to s-block elements. Therefore, we can conclude that Strontium present in s-block with two valence electrons is the correct answer.