Answer:
435.38 L
Explanation:
From the question given above, the following data were obtained:
Initial mole (n₁) = 3.25 mole
Initial volume (V₁) = 100 L
Final mole (n₂) = 14.15 mole
Final volume (V₂) =?
The final volume occupied by the gas can be obtained as follow:
V₁/n₁ = V₂/n₂
100 / 3.25 = V₂ / 14.15
Cross multiply
3.25 × V₂ = 100 × 14.15
3.25 × V₂ = 1415
Divide both side by 3.25
V₂ = 1415 / 3.25
V₂ = 435.38 L
Thus, the final volume of the gas is 435.38 L
zero because its not going anywhere its stationary
hope this helped ^_^
Answer:
H₂ is excess reactant and O₂ the limiting reactant
Explanation:
Based on the chemical reaction:
2H₂(g) + O₂(g) → 2H₂O
<em>2 moles of H₂ react per mole of O₂</em>
<em />
To find limiting reactant we need to convert the mass of each reactant to moles:
<em>Moles H₂ -Molar mass: 2.016g/mol-:</em>
10g H₂ * (1mol / 2.016g) = 4.96 moles
<em>Moles O₂ -Molar mass: 32g/mol-:</em>
22g O₂ * (1mol / 32g) = 0.69 moles
For a complete reaction of 0.69 moles of O₂ are needed:
0.69mol O₂ * (2mol H₂ / 1mol O₂) = 1.38 moles of H₂
As there are 4.96 moles,
<h3>H₂ is excess reactant and O₂ the limiting reactant</h3>
Explanation:
Sodium and potassium are in the same group on the periodic table because they both have similar number of valence electrons (1 electron) in their shells
Na = 2,8,1
K = 2,8,8,1