Answer:
Molarity.
Explanation:
- The molarity (M) of a solution is defined as the no. of moles of solute that dissolved in 1.0 liter of the solution.
M = (mass / molar mass) of the solute (1000 / volume of the solution).
<em>So, the best measurement of concentration for describing the concentration of a solid solute dissolved in one liter of a liquid solution is Molarity.</em>
Answer:
Groups like the Halogens, which include Chlorine and Flourine, share similar properties both behaviorally and structurally. The Periodic Table is essentially a bunch of patterns and trends and the groups (like the one with Sodium and Potassium) were grouped together because of these similarities.
Explanation:
https://en.wikipedia.org/wiki/Alkali_metal
Answer is: the atom is the smallest known particle of matter.
John Dalton claimed that atom is indestructible and a<span>ll atoms of a given element are identical in mass and properties.
</span>Thomson discovered electron and found the first evidence for isotopes<span> of a stable element.</span>
<u>Answer:</u> C) be hypertonic to Tank B.
<u>Explanation: </u>
<u>
The ability of an extracellular solution to move water in or out of a cell by osmosis</u> is known as its tonicity. Additionally, the tonicity of a solution is related to its osmolarity, which is the <u>total concentration of all the solutes in the solution.
</u>
Three terms (hypothonic, isotonic and hypertonic) are used <u>to compare the osmolarity of a solution with respect to the osmolarity of the liquid that is found after the membrane</u>. When we use these terms, we only take into account solutes that can not cross the membrane, which in this case are minerals.
- If the liquid in tank A has a lower osmolarity (<u>lower concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypotonic with respect to the latter.
- If the liquid in tank A has a greater osmolarity (<u>higher concentration of solute</u>) than the liquid in tank B, the liquid in tank A would be hypertonic with respect to the latter.
- If the liquid in tank A has the same osmolarity (<u>equal concentration of solute</u>) as the liquid in tank B, the liquid in tank A would be isotonic with respect to the latter.
In the case of the problem, option A is impossible because the minerals can not cross the membrane, since it is permeable to water only. There is no way that the concentration of minerals decreases in tank A, so <u>the solution in this tank can not be hypotonic with respect to the one in Tank B. </u>
Equally, both solutions can not be isotonic and neither we can say that the solution in tank A has more minerals that the one in tank B because the liquid present in tank B is purified water that should not have minerals. Therefore, <u>options B and D are also not correct.</u>
Finally, the correct option is C, since in the purification procedure the water is extracted from the solution in tank A to obtain a greater quantity of purified water in tank B. In this way, the solution in Tank A would be hypertonic to Tank B.
Answer:
The big energy change when water freezes is in the potential energy of interactions between the water molecules.
Explanation:
I am not to sure if this is correct, but I hope it helps in some way.