<u>Answer:</u> The net ionic equation is written below.
<u>Explanation:</u>
Net ionic equation of any reaction does not include any spectator ions.
Spectator ions are defined as the ions which does not get involved in a chemical equation. They are found on both the sides of the chemical reaction when it is present in ionic form.
The chemical equation for the reaction of nickel (II) acetate and potassium hydroxide is given as:

Ionic form of the above equation follows:

As, acetate and potassium ions are present on both the sides of the reaction. Thus, it will not be present in the net ionic equation and are spectator ions.
The net ionic equation for the above reaction follows:

Hence, the net ionic equation is written above.
The mass percent of oxygen is 32.82%.
<h3>What is a noble gas?</h3>
A noble gas is member of group 18 in the periodic table. The members of this group are known not to be reactive and they do not easily form compounds. However, there have been few compounds of the members of group 18 that have been reported.
Let us now calculate the relative molecular mass of xenon tetraoxide.
Xe + 4 (O)
131 + 4(16) = 195
Given that the mass of oxygen in the compound is 64, the mass percent of oxygen in xenon tetroxide is obtained from;
64/195 * 100/1
= 32.82%
Learn more about mass percent:brainly.com/question/5394922
#SPJ1
two <em>p</em><em> orbitals is true answer boi </em>
Answer:
Relation between , molality and temperature is as follows.
T =
It is also known as depression between freezing point where, i is the Van't Hoff factor.
Let us assume that there is 100% dissociation. Hence, the value of i for these given species will be as follows.
i for = 3
i for glucose = 1
i for NaCl = 2
Depression in freezing point will have a negative sign. Therefore, d
depression in freezing point for the given species is as follows.
=
=
=
Therefore, we can conclude that given species are arranged according to their freezing point depression with the least depression first as follows.
Glucose < NaCl <
Explanation:
IT forms because they are highly reactive elements.