Taking into account the definition of calorimetry, 0.0185 moles of water are required.
<h3>Calorimetry</h3>
Calorimetry is the measurement and calculation of the amounts of heat exchanged by a body or a system.
Sensible heat is defined as the amount of heat that a body absorbs or releases without any changes in its physical state (phase change).
So, the equation that allows to calculate heat exchanges is:
Q = c× m× ΔT
where Q is the heat exchanged by a body of mass m, made up of a specific heat substance c and where ΔT is the temperature variation.
<h3>Mass of water required</h3>
In this case, you know:
Heat= 92.048 kJ
Mass of water = ?
Initial temperature of water= 34 ºC
Final temperature of water= 100 ºC
Specific heat of water = 4.186
Replacing in the expression to calculate heat exchanges:
92.048 kJ = 4.186 × m× (100 °C -34 °C)
92.048 kJ = 4.186 × m× 66 °C
m= 92.048 kJ ÷ (4.186 × 66 °C)
<u><em>m= 0.333 grams</em></u>
<h3>Moles of water required</h3>
Being the molar mass of water 18 , that is, the amount of mass that a substance contains in one mole, the moles of water required can be calculated as:
Unstable isotopes occur when the strong force is unable to overcome the <span> <span>electrostatic force.</span></span><span> There are no stable isotopes in the elements at the upper end of the periodic table, which clearly demonstrates the limit of the ability of the nuclear binding energy or the residual strong force, to overcome the electrostatic repulsion of all those protons in the nucleus.
For the same substance: when matter is transitioning from solid to liquid <em>(melting)</em> or liquid to solid <em>(freezing)</em>, <em><u>its temperature is fixed at the melting/freezing point, which is the same temperature.</u></em>