First convert the speed of mosquito to m/s:
So the mosquito is flying at (2,400/3,600) m/s,
or ⅔ m/s.
<span>
Since you are moving at 2m/s, so this makes the closing
velocity between you and the mosquito to be 2⅔ m/s. </span>
Therefore the mosquito will hit your sunglasses at:<span>
35 m / (2⅔ m/s) = 13⅛ seconds.
2.0 m/s * 13⅛ s = 26¼ m from your initial position.
<span>⅔ m/s * 13⅛ s = 8¾ m from the mosquito's initial position. </span></span>
3 trillion= 3X10^<span>12
5 thousanths= 5X10^-3
730000000000000= 7.3X10^14
0.000000000082= 8.2X10^-11</span>
Answer:
245.45km in a direction 21.45° west of north from city A
Explanation:
Let's place the origin of a coordinate system at city A.
The final position of the airplane is given by:
rf = ra + rb + rc where ra, rb and rc are the vectors of the relative displacements the airplane has made. If we separate this equation into its x and y coordinates:
rfX = raX+ rbX + rcX = 175*cos(30)-150*sin(20)-190 = -89.75km
rfY = raY + rbY + rcT = 175*sin(30)+150*cos(20) = 228.45km
The module of this position is:

And the angle measure from the y-axis is:

So the answer is 245.45km in a direction 21.45° west of north from city A
Can you give us the options…?