Answer:
the work done by the 30N force is 4156.92 J.
For this problem, they don´t ask you to determine the work of the total force applied in the block. They only want the work done for the force of 30N, with an angle of 30º respectively of the displacement and a traveled distance of 160m. So:
W=F·s·cos(α)=30N·160m·cos(30º)=4156.92J
Answer:
1) 341 Hz
Explanation:
When a string vibrates, it can vibrate with different frequencies, corresponding to different modes of oscillations.
The fundamental frequency is the lowest possible frequency at which the string can vibrate: this occurs when the string oscillate in one segment only.
If the string oscillates in n segments, we say that it is the n-th mode of vibration, or n-th harmonic.
The frequency of the n-th harmonic is given by

where
n is the number of the harmonic
is the fundamental frequency
Here we have:
is the frequency of the 3rd harmonic
So the fundamental frequency is

And so, the frequency of the 2nd harmonic is:

A magnetic field is actually generated by a moving current (or moving electric charge specifically). The magnetic field generated by a moving current can be found by using the right hand rule, point your right thumb in the direction of current flow, then the wrap of your fingers will tell you what direction the magnetic field is. In the case of current traveling up a wire, the magnetic field generated will encircle the wire. Similarly electromagnets work by having a wire coil, and causing current to spin in a circle, generating a magnetic field perpendicular to the current flow (again right hand rule).
So if you were to take a permenant magnet and cut a hole in it then string a straight wire through it... my guess is nothing too interesting would happen. The two different magnetic fields might ineteract in a peculiar way, but nothing too fascinating, perhaps if you give me more context as to what you might think would happen or what made you come up with this question I could help.
Source: Bachelor's degree in Physics.
Answer:
The discharging current is
Explanation:
From the question we are told that
The radius of each circular plates is R
The displacement current is 
The radius of the central circular area is 
The discharging current is mathematically represented as

where A is the area of each plate which is mathematically represented as
and k is central circular area which is mathematically represented as
![k = \pi [\frac{R}{2} ]^2](https://tex.z-dn.net/?f=k%20%20%3D%20%20%5Cpi%20%5B%5Cfrac%7BR%7D%7B2%7D%20%5D%5E2)
So


substituting values

