Answer:
<u>For M84:</u>
M = 590.7 * 10³⁶ kg
<u>For M87:</u>
M = 2307.46 * 10³⁶ kg
Explanation:
1 parsec, pc = 3.08 * 10¹⁶ m
The equation of the orbit speed can be used to calculate the doppler velocity:

making m the subject of the formula in the equation above to calculate the mass of the black hole:
.............(1)
<u>For M84:</u>
r = 8 pc = 8 * 3.08 * 10¹⁶
r = 24.64 * 10¹⁶ m
v = 400 km/s = 4 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 590.7 * 10³⁶ kg
<u>For M87:</u>
r = 20 pc = 20 * 3.08 * 10¹⁶
r = 61.6* 10¹⁶ m
v = 500 km/s = 5 * 10⁵ m/s
G = 6.674 * 10⁻¹¹ m³/kgs²
Substituting these values into equation (1)

M = 2307.46 * 10³⁶ kg
The mass of the black hole in the galaxies is measured using the doppler shift.
The assumption made is that the intrinsic velocity dispersion is needed to match the line widths that are observed.
Answer:
The tangential speed of the ball is 11.213 m/s
Explanation:
The radius is equal:
(ball rotates in a circle)
If the system is in equilibrium, the tension is:

Replacing:

Replacing:

Answer:
Seafloor spreading is a geologic process in which tectonic plates—large slabs of Earth's lithosphere—split apart from each other. ... As tectonic plates slowly move away from each other, heat from the mantle's convection currents makes the crust more plastic and less dense
Explanation:
Answer: I don't understand
Explanation:
study and pay attention
1<span>Define the equation for the force of gravity that attracts an object, <span>Fgrav = (Gm1m2)/d2</span>
2. </span>Use the proper metric units.
3. Determine the mass of the object in question.
4. <span>Measure the distance between the two objects
5. </span><span>Solve the equation
</span>