Answer:
You can create an electromagnet by wrapping an insulated wire around a metal with ferromagnetic properties and applying an electric current."
Explanation:
Electromagnets are made by wrapping an insulated wire around a metal with ferromagnetic properties (example is iron), to form a loop, and then applying a current through the wire. Electromagnets can generate magnetism with a strong force field, and unlike normal magnets, their strength can be varied by varying the amount of current flowing through the coil. Their main disadvantage, which is also their most utilized property is that their magnetism is lost once the current flowing through the wire is cut-off.
Answer:
You could use newton’s second law to calculate the force applied to an object if you knew the objects mass and its <u>acceleration.</u>
Explanation:
By, Newtons second law, the force applied on an object directly varies with the acceleration caused and the mass of the object.
This is given by :

Where
represents force applied on the object ,
represents mass of the object and
represents the acceleration.
In order to calculate force applied on object we require the mass of the object and its acceleration. The force can be calculated by finding the product of mass and acceleration of the object.
This is a conservation of momentum problem! Here's how to do it:
Answer:
Explanation:
Ignoring friction, the initial kinetic energy will convert to maximum potential energy at its highest point.
PE = KE
mgh = ½mv²
h = v²/2g
h = 36.4²/ (2(9.81))
h = 67.53109...
h = 67.53 m
Answer:
1.10m/s
2.0.1m
3.5Hz
Explanation:
v=velocity, f=frequency and T=wavelength
1.v=ft
v=2x5
=10m
2.v=ft
100=1000T
divide both sides by 1000
T=0.1m
3.v=fT
25=5f
divide both sides by 5
f=5Hz