Answer:
7/16 <em>is </em><em>the </em><em>probability </em><em>of </em><em>given </em><em>querty</em>
Mechanical advantage is defined as the ratio of output load to the input load. The mechanical advantage of the machine will be 0.1.
<h3>What is
mechanical advantage?</h3>
Mechanical advantage is a measure of the ratio of output force to input force in a system,
It is used to obtain the efficiency of forces in levers and pulleys. It is an effective way of amplifying the force in simple machines like levers.
The theoretical mechanical advantage is defined as the ratio of the force responsible for the useful work in the system to the applied force.
Given
applied force = 250 N
Output force = 25
Mechanical advantage = work output / work input



Hence the mechanical advantage of the machine will be 0.1
To learn more about the mechanical advantage refer to the link;
brainly.com/question/7638820
Answer:
e.)At twice the distance, the strength of the field is E/4.
Explanation:
The strength of the electric field at a certain distance from a point charge is given by:

where
k is the Coulomb's constant
Q is the charge
r is the distance from the point charge
In this problem, the distance from the point charge is doubled:
r' = 2r
So the new electric field strength is

so, at twice the distance the strength of the field is E/4.
No, because in oxygen depraved rooms, if you drop a feather and a bowling ball at the same height and time, they will fall at the same speed and have the same amount of impact.
Answer:
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂
Explanation:
The impedance of a series circuit is
Z₀² = R² + (X_L-X_C) ²
when we place another resistor in series the initial resistance impedance changes to
Z² = (R + R₂) ² + (X_L - X_C) ²
let's analyze this expression
* The first thing we observe is that the frequency response does not change
* The current that circulates in the circuit decreases due to the new resistance at the resonance point,
Z = R + R₂