The answer is true, catalysts increase rates by lowering the activation energy of a reaction. Catalysts lower the reaction energy and so the reaction occurs faster. Enzymes perform the role of biological catalysts. Most metabolic pathways of the body are controlled by enzymes. Enzymes by classification are proteins. <span />
Answer:
2.29 g of N2
Explanation:
We have to start with the <u>chemical reaction</u>:

The next step is to <u>balance the reaction</u>:

We can continue with the <u>mol calculation</u> using the molar mass of
(65 g/mol), so:

Now, with the<u> molar ratio</u> between
and
we can <u>calculate the moles</u> of
(2:3), so:
With the molar mass of
we can <u>calculate the grams</u>:
I hope it helps!
Answer:
THE MOLARITY OF SODIUM CHLORIDE IN THE CONTAINER IS 0.3846 M.
Explanation:
Molarity of a solution is the number of moles of solute per dm3 of solution.
Mass concentration = Molar concentration * Molar mass
1. calculate the mass concentration;
Mass conc. = 45 g in 2 L
= 45 g in 2 dm3
In 1 dm3, the mass will be 45 / 2
= 22.5 g/dm3 of NaCl.
2. Calculate the molar mass;
(Na = 23, Cl = 35.5)
Molar mass = ( 23 + 35.5 ) g/mol
Molar mass = 58.5 g/mol
3. calculate the molarity
Molarity = mss concentration / molar mass
Molarity = 22.5 g/dm3 / 58.5 g/mol
Molarity = 0.3846 mol/dm3 of NaCl.
The molarity of sodium chloride in the container is 0.3846 mol/dm3
The molecular formula of methylpropan-1-ol is C4H10O, so the complete combustion equation is: C4H10O + 6O2 --> 4CO2 + 5H2O. This mean to completely combust 1.0mol of methylpropan-1-ol, 6 mol of O2 is required. Molar mass of O2 is 32 g/mol, so 32g/mol x 6mol = 192 g of O2 is required. At room temperature and pressure, the density of O2 is 1.3315 g/L (this can be obtained by density of gas = P/RT). So the volume of O2 = mass/density = 192g/1.3315(g/L) = 144 L = 144 dm3. The answer is B.