Answer:
It is independent of the path of the body and depends only on the starting and ending points.
Explanation:
In Physics we define a conservative force as a force that is independent of the path of the body and depends only on the starting and ending points.
For conservative forces we can write;
KEi + PEi = KEf +PEf
where;
KEi= initial kinetic energy
PEi= initial potential energy
KEf= final kinetic energy
PEf= final potential energy
This equation is known as the principle conservation of mechanical energy . It applies only to conservative forces where friction is negligible. The term KE + PE is also known as the total mechanical energy of the system.
Answer:
159241.048 cm³/s
Explanation:
r = Radius = 3×height = 3h
h = height = 16 cm
Height of the pile increases at a rate = 

Differentiating with respect to time

∴ Rate is the sand leaving the bin at that instant is 159241.048 cm³/s
1. All of the above
2. Lack of consistent sunlight
3. Nonpolluting & Can be developed anywhere
4. Protons and Neutrons
sorry the answer is so late...Hope it still helps u
:)
Also I'm pretty sure all the answers I provided are correct but I'm not sure 4 a fact so plz let me know...
Answer:
The average current that this cell phone draws when turned on is 0.451 A.
Explanation:
Given;
voltage of the phone, V = 3.7 V
electrical energy of the phone battery, E = 3.15 x 10⁴ J
duration of battery energy, t = 5.25 h
The power the cell phone draws when turned on, is the rate of energy consumption, and this is calculated as follows;

where;
P is power in watts
E is energy in Joules
t is time in seconds

The average current that this cell phone draws when turned on:
P = IV

Therefore, the average current that this cell phone draws when turned on is 0.451 A.
Answer:
Frequency, 
Explanation:
Visible red light has a wavelength of 680 nanometers (6.8 x 10⁻⁷ m). The speed of light is 3.0 x 10 ⁸ m / s. What is the frequency of visible red light?
It is given that,
Wavelength of a visible red light is, 
Speed of light is, 
We need to find the frequency of visible red light. It can be calculated using below relation.

So, the frequency of visible red light is
.