Answer:
229,098.96 J
Explanation:
mass of water (m) = 456 g = 0.456 kg
initial temperature (T) = 25 degrees
final temperature (t) = - 10 degrees
specific heat of ice = 2090 J/kg
latent heat of fusion =33.5 x 10^(4) J/kg
specific heat of water = 4186 J/kg
for the water to be converted to ice it must undergo three stages:
- the water must cool from 25 degrees to 0 degrees, and the heat removed would be Q = m x specific heat of water x change in temp
Q = 0.456 x 4186 x (25 - (-10)) = 66808.56 J
- the water must freeze at 0 degrees, and the heat removed would be Q = m x specific heat of fusion x change in temp
Q = 0.456 x 33.5 x 10^(4) = 152760 J
- the water must cool further to -10 degrees from 0 degrees, and the heat removed would be Q = m x specific heat of ice x change in temp
Q = 0.456 x 2090 x (0 - (-10)) = 9530.4 J
The quantity of heat removed from all three stages would be added to get the total heat removed.
Q total = 66,808.56 + 152,760 + 9,530.4 = 229,098.96 J
What is that?? Please tell us
As momentum / time = force
so; time = 100÷15
so your answer is 6.7 !!
The air would contract therefore the answer is the second choice.
Answer:
Current is in phase with voltage in a resistive circuit. Note that the wave form for power is always positive, never negative for this resistive circuit. This means that power is always being dissipated by the resistive load, and never returned to the source as it is with reactive loads.Explanation: