(30, 5)
(10, 1)
change of y / change of x
= (30 - 10) / (5 - 1)
= 20 /4
= 5
Answer:
The answers to the questions have been solved in the attachment.
Explanation:
The answers to part a to e are all contained in the attachment. For answer part b, temperature and frequency were assumed to be fixed or constant. V² is directly proportional to T telling us that variation in T gives us a square in the frequency variation. This tells us why it is difficult when both frequencies are on this side of the black body.
الجواب هو الأول الجواب هو الأول
Answer:
Gwen’s assumption of asteroid hit as long term change is incorrect. Asteroid hit is not a long term change, instead, it is a short term change.
Explanation:
Examples of short term changes are drought, flood, volcanic eruption, etc. A short term change occurs quickly and can immediately affect organisms but it doesn’t become a reason for species extinction. The effects of a short term change don’t prevail over a long span of time.
Examples of long term changes are ice age, global warming, deforestation, etc. Unlike a short term change, it takes time but the consequences are far-reaching. It can lead to species extinction.
In this question, asteroid hit is a quick and unexpected hazard, unlike the slow long term environmental changes.
In #8, the distance and the (magnitude of displacement) are equal, because he crawled in a straight line.
Displacement = (straight-line distance from start-point to end-point) in the direction from start to end, regardless of what route was actually followed.
Displacement = 5m, in the negative direction.
In #9 . . . distance will be the same. Displacement is going to be the same magnitude, but in the positive direction.
This is so simple that it's hard to talk about.
In #8, "What was the bug's distance ?". "Distance was 5 meters.". "What was the bug's displacement ?", "Displacement was 5 meters backwards."
In #9, What was the bug's distance ?". "Distance was 5 meters.". "What was the bug's displacement ?", "Displacement was 5 meters forward."