Answer:
Hey there
Where trying to say that:
Newton's first law gives the concept of force and momentum?
That's false if that's is what you said.
Newton's first law tells us that objects in motion will remain in motion and objects at rest will remain at rest.
Newton's second law gives us the concept of force and momentum.
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))
Answer:
The statement is true.
Both gravity and centrifugal force act on the Moon which causes it get pulled towards Earth (gravity) and get "flung away" so it doesn't hit us (centrifugal force).
Answer:
The velocity of the motorboat after 6s is 24 m/s.
Explanation:
Given;
acceleration of the motorboat, a = 4.0 m/s²
initial velocity of the motorboat, u = 0
time of motion of the motorboat = 6s
Apply the following kinematic equation to determine the velocity of the motorboat after 6 ;
v = u + at
v = 0 + (4 x 6)
v = 24 m/s
Therefore, the velocity of the motorboat after 6s is 24 m/s.
The refractive index of water is

. This means that the speed of the light in the water is:

The relationship between frequency f and wavelength

of a wave is given by:

where v is the speed of the wave in the medium. The frequency of the light does not change when it moves from one medium to the other one, so we can compute the ratio between the wavelength of the light in water

to that in air

as

where v is the speed of light in water and c is the speed of light in air. Re-arranging this formula and by using

, we find

which is the wavelength of light in water.