Answer:
sin 3 θ = 3 sin θ - 4 sin³θ
Step-by-step explanation:
<u><em>Step(i):</em></u>-
Given sin 3 θ
= sin ( 2θ + θ )
apply trigonometric formula
<em> sin ( A + B) = sin A cos B + cos A sin B </em>
<em> sin 2 A = 2 sin A cos B</em>
<em> Cos 2 A = 1 - 2 sin² A </em>
<em> cos ² A - sin ² A = 1</em>
<u><em>Step(ii):</em></u>-
sin 3 θ = sin ( 2θ + θ )
= sin 2θ cosθ + cos2θ sin θ
= 2 sin θ cos θ cos θ +( 1 - 2 sin² θ )sin θ
= 2 sin θ (cos² θ ) + sin θ- 2 sin³ θ
= 2 sin θ ( 1- sin²θ) + sin θ- 2 sin³ θ
= 2 sin θ - 2sin³θ + sin θ- 2 sin³ θ
= 3 sin θ - 4 sin³θ
<u><em>Final answer</em></u> :-
sin 3 θ = 3 sin θ - 4 sin³θ
Answer: 1.94 and -1.94
Step-by-step explanation: I just got the answers from the review i didnt get the problem right because i put 2 and -2 the answer actually was 1.94 and -1.94
Hope this helped
once again ANSWER: 1.94and -1.94
Answer:
see explanation
Step-by-step explanation:
We require to find the third side of the triangle.
Using Pythagoras' identity
The square on the hypotenuse is equal to the sum of the squares on the other 2 sides.
let x represent the third side, then
x² + 15² = 17², that is
x² + 225 = 289 ( subtract 225 from both sides )
x² = 64 ( take the square root of both sides )
x =
= 8
Thus
tanΘ =
= 
cosΘ =
= 
sinΘ =
= 
cscΘ =
=
= 