The self-inductance of a coil will change by 8 times its original value by increasing its radius value by 2 and increasing the length of the coil by 2.
Self-Inductance: -
The definition of self-inductance is the induction of a voltage in a wire that carries current when the current in the wire is changing. In the instance of self-inductance, the circuit itself induces a voltage through the magnetic field produced by a changing current.
We know that the self-inductance of the coil is denoted by: -
L= µ *π*(r)^2*(N)^2*l
Where
L= Self-Inductance of the coil
µ= Magnetic Permeability Constant
r= Radius of the coil
l= Length of the coil
N= Number of turns of the coil
Here Self-inductance of the coil is directly proportional to the length of the coil and the square of the radius of the coil.
So,
On increasing the radius of the coil by a factor of 2 and the length of the coil by 2 the self-inductance of the coil increases by 8 times its original value.
Learn more about Self-Inductance here: -
" brainly.com/question/15293029 "
#SPJ4
Answer:
Check the explanation
Explanation:
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
The image is virtual
The image is upright
given
R = 1.5 cm
object distance, u = 1.1 cm
focal length of the ball, f = -R/2
= -1.5/2
= -0.75 cm
let v is the image distance
use, 1/u + 1/v = 1/f
1/v = 1/f - 1/u
1/v = 1/(-0.75) - 1/(1.1)
v = -0.446 cm <<<<<---------------Answer
magnification, m = -v/u
= -(-0.446)/1.1
= 0.405 <<<<<<<<<---------------Answer
Kindly check the diagram in the attached image below.
Explanation:
1. To graphically add vectors, use the tail-to-tip method. Draw the first vector (it doesn't matter which), then draw the second vector where the first vector ends. The resultant vector is from the tail of the first vector to the tip of the second vector.
This graph shows two ways to get the resultant: A + B or B + A.
desmos.com/calculator/bqhcclhhqc
2. To algebraically add vectors, split each vector into x and y components.
Aₓ = 5.0 cos 45 = 3.5
Aᵧ = 5.0 sin 45 = 3.5
Bₓ = 2.0 cos 180 = -2.0
Bᵧ = 5.0 sin 180 = 0
The components of the resultant vector are the sums of the components of A and B.
Cₓ = 3.5 + -2.0 = 1.5
Cᵧ = 3.5 + 0 = 3.5
The magnitude of the resultant vector is found with Pythagorean theorem, and the direction is found with tangent.
C = √(Cₓ² + Cᵧ²) ≈ 3.9 m/s
θ = atan(Cᵧ / Cₓ) ≈ 67°
Answer:
(A) Total energy will be equal to 
(b) Energy density will be equal to 
Explanation:
We have given diameter of the plate d = 2 cm = 0.02 m
So area of the plate 
Distance between the plates d = 0.50 mm = 
Permitivity of free space 
Potential difference V =200 volt
Capacitance between the plate is equal to 
(a) Total energy stored in the capacitor is equal to


(b) Volume will be equal to
, here A is area and d is distance between plates

So energy density 
We know that 1 minute= 60 seconds (or 1 min= 60 s).
10 min* (60 s/ 1 min)* (2.0 m/ 1 s)= 1,200 m.
(Note that the units cancel out so you get the answer)
The final answer is 1,200 m.
Hope this helps~