Question; what causes earthquakes?
Answer; what causes earthquakes are mainly when rocks are underground and then suddenly break along a fault.
Answer:
Oracio is the most cost-effective choice because he would cost the least to complete the project. However, he would also take the longest amount of time. Camilla could complete the job the fastest, but she costs more than Oracio. SciTech will have to decide if it is more important to save money or complete the work quickly to meet the deadline.
Hope this helps :)
Answer:
The coupled velocity of both the blocks is 1.92 m/s.
Explanation:
Given that,
Mass of block A, 
Initial speed of block A, 
Mass of block B, 
Initial speed of block B, 
It is mentioned that if the two blocks couple together after collision. We need to find the common velocity immediately after collision. We know that due to coupling, it becomes the case of inelastic collision. Using the conservation of linear momentum. Let V is the coupled velocity of both the blocks. So,

So, the coupled velocity of both the blocks is 1.92 m/s. Hence, this is the required solution.
This group is called “noble gases” because they do not react with other elements. This is because they have a full valence shell.
Answer:
B) Friction
Explanation:
Friction is a force that acts when an object is sliding along a surface. Microscopically, this force is due to the fact that the two surfaces are not perfectly smooth, but they have "imperfections" that cause a force that opposes the motion of the object.
For an object sliding on a flat surface, the force of friction has magnitude:

where
is the coefficient of kinetic friction
m is the mass of the object
g is the acceleration of gravity
The direction of the force of friction is always opposite to the direction of motion of the object.
In reality, friction also acts if the object is at rest and it is pushed by a force; in this case, we talk about static friction, and its magnitude is

where
is called coefficient of static friction, and it is generally larger than the coefficient of kinetic friction.