5.4*10^-19 C
Explanation:
For the purposes of this question, charges essentially come in packages that are the size of an electron (or proton since they have the same magnitude of charge). The charge on an electron is -1.6*10^-19
Therefore, any object should have a charge that is a multiple of the charge of an electron - It would not make sense to have a charge equivalent to 1.5 electrons since you can't exactly split the electron in half. So the charge of any integer number of electrons can be transferred to another object.
Charge = q(electron)*n(#electrons)
Since 5.4/1.6 = 3.375, we know that it can not be the right answer because the answer is not an integer.
If you divide every other option listed by the charge of an electron, you will get an integer number.
(16*10^-19 C)/(1.6*10^-19C) = 10
(-6.4*10^-19 C)/(1.6*10^-19C) = -4
(4.8*10^-19 C)/(1.6*10^-19C) = 3
(5.4*10^-19 C)/(1.6*10^-19C) = 3.375
(3.2*10^-19C)/(1.6*10^-19C) = 2
etc.
I hope this helps!
Answer:
less than stating velocity due to friction and air resistance.
Explanation:
It depends. If you are driving and the person doesn't look like a serial killer, you should stop.
Answer:1.084
Explanation:
Given
mass of Pendulum M=10 kg
mass of bullet m=5.5 gm
velocity of bullet u
After collision let say velocity is v
conserving momentum we get


Conserving Energy for Pendulum
Kinetic Energy=Potential Energy

here
from diagram
therefore

initial velocity in terms of v

For first case 

for second case 

Therefore 


i.e.