They are attracted by the shared pair of electrons. One requires one more electron and the other atom shares one electron with the other, making the atoms come together and stay.
Answer: 1.4 moles
Explanation:
I can only assume you are looking for the amount of moles in 0.4M. the capital M means Molarity.
Molarity=moles of solute/liters of solution
Since we know the molarity is 0.4, we can plug this into our equation

moles= 1.4
Charles law gives the relationship between volume and temperature of gas.
It states that at constant pressure volume is directly proportional to temperature
Therefore
V/ T = k
Where V - volume T - temperature in kelvin and k - constant
V1/T1 = V2/T2
Parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation
Substituting the values in the equation
267 L/ 480 K = V / 750 K
V = 417 L
Final volume is 417 L
This all depends on lots of independent variables such as force used to roll the ball, wind resistance, etc. With no variables included, they would both move at the same velocity.
Answer:
The initial temperature was 58.4°C
Explanation:
Given the following data:
initial volume = V₁ = 380 mL = 0.38 L
final volume = V₂ = 250 mL = 0.25 L
final temperature = T₂ = -55°C = 218 K
According to Charles's law, the volume of a gas is <em>directly proportional to the temperature</em> (in Kelvin). The mathematical expression is:
V₁/T₁= V₂/T₂
So, we calculate the initial temperature (V₁) as follows:
T₁ = T₂/V₂ x V₁ = 218 K/(0.25 L) x 0.38 L = 331.36 K ≅ 331.4 K
Finally, we convert the initial temperature from K to °C:
T₁= 331.4 K - 273 = 58.4°C