Answer:
Power = 20 Watts
Explanation:
Given the following data;
Voltage = 100 V
Resistance = 500 Ohms
To find the power that is required to light a lightbulb;
Mathematically, power can be calculated using the formula;

Substituting into the formula, we have;


Power = 20 Watts
The acceleration of the object is 
Explanation:
We can solve the problem by using Newton's second law, which states that the net force exerted on an object is equal to the product between the mass of the object and its acceleration:

where
F is the net force
m is the mass of the object
a is its acceleration
For the object in this problem,
F = 500 N is the applied force
m = 75 kg is the force
Solving the equation for a, we find the acceleration:

Learn more about Newton's second law:
brainly.com/question/3820012
#LearnwithBrainly
It magnifies light received from distant objects.
Answer:
Resistance of the second wire is twice the first wire.
Explanation:
Let us first see the formula of resistance;
R = pxL/A
Here L is the lenght of the wire, A the area and p is the resistivity of wire.
As we are given that the length of second wire is double than that of the first wire, hence the resistance of second wire would be double.
Since we have two loop in second case, inducing double voltage but as resistance is doubled so the current would remain same according to ohms law
I = V/R
V=IR
Potential Difference (v)= Current (A) * Resistance (Ω)
As V increases, R also increases.