Answer:
An orbital is a region in space where there is a high probability of finding an electron.
Explanation:
The orbital is a concept that developed in quantum mechanics. Recall that Neils Bohr postulated that the electron occupied stationary states which he called energy levels. Electrons emit radiation when the move from a higher to a lower energy level. Similarly, energy is absorbed by an electron to move from a lower to a higher orbit.
This idea was upturned by the Heisenberg uncertainty principle. This principle state that the momentum and position of a particle can not be simultaneously measured with precision.
Instead of defining a 'fixed position' for the electron, we define a region in space where there is a possibility of finding an electron with a certain amount of energy. This orbital is identified by a set of quantum numbers.
Answer: Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Explanation:
Molarity of a solution is defined as the number of moles of solute dissolved per Liter of the solution.
According to the neutralization law,
where,
= molarity of
solution = 0.338 M
= volume of
solution = 25.7 ml
= molarity of
solution = 0.155 M
= volume of
solution = ?
= valency of
= 1
= valency of
= 1
Therefore, the volume of a 0.155 M potassium hydroxide solution is 56.0 ml
Equation is as follow,
<span> 2 AgNO</span>₃<span> + MgBr</span>₂<span> </span>→ <span>2 AgBr + Mg(NO</span>₃<span>)</span>₂
According to eq.
339.74 g (2 moles) AgNO₃ produces = 375.54 g (2 moles) of AgBr
So,
22.5 g AgNO₃ will produce = X g of AgBr
Solving for X,
X = (22.5 g × 375.54 g) ÷ 339.74 g
X = 24.87 g of AgBr
Tc is Technetium, and it has an atomic number of 43. Its atomic configuration is [Kr] 5s(1) 4d(5) [I'm on my phone so I can't do numbers on shoulders, pretend that 1 and 5 are on the s and d's shoulder]
The outside most ring is the 4d(5), and the d orbital can hold ten electrons.
Valence electrons are electrons, in you could say the outside ring that isn't filled, the extra ones. In this case, there are 5.
Answer:
2–methylpropene.
Explanation:
To successfully name the compound given in the question, we must observe the following:
1. Determine the functional group of the compound.
2. Locate the longest continuous carbon chain. This gives the parent name of the compound.
3. Identify the substituent group attached and locate it's position by giving it the lowest possible count.
4. Combine the above to obtain the name of the compound.
Now, let us determine the name of the compound. This is illustrated below:
1. The functional group of the compound is the double bond i.e the compound is an alkene.
2. The longest continuous carbon chain is 3 i.e propene since it is an alkene.
3. The substituent group attached is methyl i.e CH3. In this case, we'll start counting from the side of the double bond being the functional group. Therefore, the methyl group i.e CH3 is at carbon 2.
4. Therefore, the name of the compound is:
2–methylpropene