Answer:
We wouldn't have Coronavirus
Explanation:
Answer : The concentration of NaOH is, 0.336 M
Explanation:
To calculate the concentration of base, we use the equation given by neutralization reaction:

where,
are the n-factor, molarity and volume of acid which is 
are the n-factor, molarity and volume of base which is NaOH.
We are given:

Putting values in above equation, we get:


Thus, the concentration of NaOH is, 0.336 M
I believe that the answer is D.
I hope this helps. :)
Explanation:
For the given reaction:
Rate law says that rate of a reaction is directly proportional to the concentration of the reactants each raised to a stoichiometric coefficient determined experimentally called as order.

![Rate=k[CO]^x[H_2]^y](https://tex.z-dn.net/?f=Rate%3Dk%5BCO%5D%5Ex%5BH_2%5D%5Ey)
where x and y are order wrt to
and 
According to collision theory , the molecules must collide for a reaction to take place. According to collision theory , the rate of a reaction is proportional to rate of collision of reactants.
Thus with an increase in concentration of reactants , the rate of reaction also increases. This is because if the concentration of reactants increases , the chances of collision between molecules also increases and thus more products wil be formed which in turn increases the rate of reaction.
<u>Answer:</u> The volume of water required is 398 mL
<u>Explanation:</u>
To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (manganese (II) nitrate tetrahydrate) = 16 g
Molar mass of manganese (II) nitrate tetrahydrate = 251 g/mol
Molarity of solution = 0.16 M
Putting values in above equation, we get:

Hence, the volume of water required is 398 mL