Answer
given,
diameter of the pipe is = (14 ft)4.27 m
minimum speed of the skater must have at very top = ?
At the topmost point of the pipe the normal force will be equal to zero.
F = mg
centripetal force acting on the skateboard

equating both the force equation


r = d/2 = 14/ 2 = 7 ft
or
r = 4.27/2 = 2.135 m
g = 32 ft/s² or g = 9.8 m/s²

v = 14.96 ft/s
or

v = 4.57 m/s
I answered the question but it got deleted?? why?
Answer:
6.8 m/s2
Explanation:
Let g = 9.8 m/s2. The total weight of both the rope and the mouse-robot is
W = Mg + mg = 1*9.8 + 2*9.8 = 29.4 N
For the rope to fails, the robot must act a force on the rope with an additional magnitude of 43 - 29.4 = 13.6 N. This force is generated by the robot itself when it's pulling itself up at an acceleration of
a = F/m = 13.6 / 2 = 6.8 m/s2
So the minimum magnitude of the acceleration would be 6.8 m/s2 for the rope to fail
The oxygen has more electronegativity (3.44), making hydrogen more 'positive'. Hydrogen will be attracted to Cl since it is more 'negative'. Electronegativity(EN) of H is 2.2 whereas Cl has EN of 3.16
The process is denitrification