Answer:
0.82 m
Explanation:
The ball is in free fall - uniform accelerated motion with constant acceleration downward,
(acceleration of gravity). So we can use the following suvat equation to solve the problem:

where
v is the final velocity
u = 4 m/s is the initial velocity
a is the acceleration
s is the displacement
At the maximum displacement, v = 0 (the velocity becomes zero). Substituting and solving for s, we find:

<span>The visible light has wavelength in the range 400 - 700 nano-meters. The wavelengths longer than visible light are: 1-Infrared waves (used in ringtone/mobile waves)2-microwaves - used to heat and cook food. 3- Radio waves - used in communication purposes.</span>
The answer to this question i think would be 8950. Do you have any answer choices.
Answer:
a) from the hotter object to the cooler object
Explanation:
temperature moves by conduction, which is associated with the movement of atoms or molecules and the always move from hight temperatures to lower temperatures to attain thermal equilinrium of the system.
so when two objects are placed together and have different temperatures then the system is not in thermal equilibrium and to attain it, temperature can only move to coller object and not from the coller object according to thermodynamics.
Answer: A combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.
Explanation:
The term standard temperature and pressure is also known as STP and it is most commonly used when we want to calculate the density of a gas.
The term standard temperature means
Fahrenheit or
or 273 Kelvin. On the other hand, term standard pressure means 1 atmosheric pressure of a gas.
Thus, we can conclude that a combination 0 degrees Celsius and 101.3 kPa or 1 atm correctly describes standard temperature and pressure.