<span>The element bromine has two isotopes: Br-79 and Br-81, with a 50%-50% isotopic abundance. Statistically, 25% of bromine molecules will be Br79-Br79, 25% will be Br81-Br81 and 50% will be Br79-Br81. This is equivalent to a ratio of 1:1:2 or 1:2:1. The peaks in a mass spectrum just like chromatography reflect this relative abundance of different isotopic combinations.</span>
Answer:
The starting velocity for ball 1 is 1.00 meter/second. Its ending velocity is 0.25 meter/second.
The change in velocity for ball 1 is 0.25 – 1.00 = -0.75 meter/seconds
Answer: was it this problem?
Explanation:
The frequency of the wheel is given by:

where N is the number of revolutions and t is the time taken. By using N=100 and t=10 s, we find the frequency of the wheel:

And now we can find the angular speed of the wheel, which is related to the frequency by:
Answer:
2.2 s
Explanation:
Using the equation for the period of a physical pendulum, T = 2π√(I/mgh) where I = moment of inertia of leg about perpendicular axis at one point = mL²/3 where m = mass of man = 67 kg and L = height of man = 1.83 m, g = acceleration due to gravity = 9.8 m/s² and h = distance of leg from center of gravity of man = L/2 (center of gravity of a cylinder)
So, T = 2π√(I/mgh)
T = 2π√(mL²/3 /mgL/2)
T = 2π√(2L/3g)
substituting the values of the variables into the equation, we have
T = 2π√(2L/3g)
T = 2π√(2 × 1.83 m/(3 × 9.8 m/s² ))
T = 2π√(3.66 m/(29.4 m/s² ))
T = 2π√(0.1245 s² ))
T = 2π(0.353 s)
T = 2.22 s
T ≅ 2.2 s
So, the period of the man's leg is 2.2 s