You can put a known amount sodium into some sort of time release mechanism such as a pill made from soluble material. Then you can place the sodium into a calorimeter with a known mass of water and record the temperature change the water undergoes during the reaction. Then you can use the equation q(water)=m(water)c(water)ΔT to find the amount of heat absorbed by the water. since the amount of heat absorbed by the water is the amount of heat released from the sodium, q(sodium)=-q(water). Than you can use the equation q(sodium)=m(sodium)c(sodium)ΔT and solve for c(sodium)
I hope this helps and feel free to ask about anything that was unclear in the comments.
The appropriate response is gamma radiation. Alpha particles can be halted via air. UV radiation can be halted by a typical layer of clothing.Beta particles can be ceased by the thick plastic suit. Just gamma radiation can enter the substantial suit. It must be halted by thick dividers of lead or cement.
Answer:
transition metals
Explanation:
they're the elements in yellow in the picture
There can only be two electrons in the innermost shell of an atom so b is the correct answer
Fe2O3 + 2Al ---> Al2O3 + 2Fe
Mole ratio Fe2O3 : Al = 1:2
No. of moles of Fe2O3 = Mass/RMM = 250 / (55.8 * 2 + 16 * 3) = 1.56641604 moles
No. of moles of Al = 150/27 = 5.555555555 moles.
Mole ratio 1 : 2. 1.56641604 * 2 = 3.13283208 moles of Al, but you have 5.555555555 moles of Al. So Al is in excess. All of it won't react.
So take the Fe2O3 and Fe ratio to calculate the mass of iron metal that can be prepared.
RMM of Fe2O3 / Mass of Fe2O3 = RMM of 2Fe / Mass of Fe 159.6 / 250 = 111.6 / x x = 174.8 g of Fe