The empirical formula :
C₁₀H₁₆N₄SO₇
<h3>Further explanation</h3>
Given
6.4 g sample
Required
The empirical formula
Solution
mass C :
= 12/44 x 8.37 g
= 2.28
mass H :
= 2/18 x 2.75 g
= 0.305
mass N = 1.06
mass S :
= 32/64 x 1.23
= 0.615
mass O = 6.4 - (2.28+0.305+1.06+0.615) = 2.14 g
Mol ratio :
= C : H : N : S : O
= 2.28/12 : 0.305/1 : 1.06/14 : 0.615/32 : 2.14/16
= 0.19 : 0.305 : 0.076 : 0.019 : 0.133 divided by 0.019
= 10 : 16 : 4 : 1 : 7
The empirical formula :
C₁₀H₁₆N₄SO₇
Answer:
CO2(g)
Because CO2 is the larges molecule with specific geometric, therefore it is not likely to behave as an ideal gas.
Answer:
Molar mass is the mass of a given substance divided by the amount of that substance, measured in g/mol. For example, the atomic mass of titanium is 47.88 amu or 47.88 g/mol. In 47.88 grams of titanium, there is one mole, or 6.022 x 1023 titanium atoms.
Explanation:
Could I have branliest , heart, and 5 stars
Thanks!
Answer:
C3H8 + 5O2 => 3CO2 + 4H2O
Explanation:
Hydrocarbon combustion is the reaction between a hydrocarbon and O2 producing CO2 and water.
C3H8 + O2 => CO2 + H2O
First we balance the C and H.
C3H8 + O2 => 3CO2 + 4H2O
Now we balance O for the answer!
C3H8 + 5O2 => 3CO2 + 4H2O
The reaction described above is the formation of an acetal. The initial starting material has a central carbonyl and two terminal alcohol functional groups. In the presence of acid, the carbonyl will become protonated, making the carbon of the carbonyl susceptible to nucleophilic attack from one of the alcohols. The alcohol substitutes onto the carbon of the carbonyl to provide us with the intermediate shown.
The intermediate will continue to react in the presence of acid and the -OH that was once the carbonyl will become protonated, turning it into a good leaving group. The protonated alcohol leaves and is substituted by the other terminal alcohol to give the final acetal product. The end result of the overall reaction is the loss of water from the original molecule to give the spiroacetal shown in the image provided.