Answer:
The rate of entropy change of the air is -0.10067kW/K
Explanation:
We'll assume the following
1. It is a steady-flow process;
2. The changes in the kinetic energy and the potential energy are negligible;
3. Lastly, the air is an ideal gas
Energy balance will be required to calculate heat loss;
mh1 + W = mh2 + Q where W = Q.
Also note that the rate of entropy change of the air is calculated by calculating the rate of heat transfer and temperature of the air, as follows;
Rate of Entropy Change = -Q/T
Where Q = 30Kw
T = Temperature of air = 25°C = 298K
Rate = -30/298
Rate = -0.100671140939597 KW/K
Rate = -0.10067kW/K
Hence, the rate of entropy change of the air is -0.10067kW/K
Answer:
The value of critical length = 3.46 mm
The value of volume of fraction of fibers = 0.43
Explanation:
Given data
= 800 M pa
D = 0.017 mm
L = 2.3 mm
= 5500 M pa
= 18 M pa
= 13.5 M pa
(a) Critical fiber length is given by

Put all the values in above equation we get

mm
This is the value of critical length.
(b).Since this critical length is greater than fiber length Than the volume fraction of fibers is given by

Put all the values in above formula we get

= 0.43
This is the value of volume of fraction of fibers.
Answer:
P ( 2.5 < X < 7.5 ) = 0.7251
Explanation:
Given:
- The pmf for normal distribution for random variable x is given:
f(x)=0.178 exp(-0.100(x-4.51)^2)
Find:
the fraction of individuals demonstrating a response in the range of 2.5 to 7.5.
Solution:
- The random variable X follows a normal distribution with mean u = 4.51, and standard deviation s.d as follows:
s.d = sqrt ( 1 / 0.1*2)
s.d = sqrt(5) =2.236067
- Hence, the normal distribution is as follows:
X ~ N(4.51 , 2.236)
- Compute the Z-score values of the end points 2.5 and 7.5:
P ( (2.5 - 4.51) / 2.236 < Z < (7.5 - 4.51 ) / 2.236 )
P ( -0.898899327 < Z < 1.337168651 )
- Use the Z-Table for the probability required:
P ( 2.5 < X < 7.5 ) = P ( -0.898899327 < Z < 1.337168651 ) = 0.7251
Explanation:
commands to be and function arguments
Answer:
2)
3) 
Explanation:
1) Expressing the Division as the summation of the quotient and the remainder
for
118, knowing it is originally a decimal form:
118:2=59 +(0), 59/2 =29 + 1, 29/2=14+1, 14/2=7+0, 7/2=3+1, 3/2=1+1, 1/2=0+1

2) 
Similarly, we'll start the process with the absolute value of -49 since we want the positive value of it. Then let's start the successive divisions till zero.
|-49|=49
49:2=24+1, 24:2=12+0,12:2=6+0,6:2=3+0,3:2=1+1,1:2=0+1
100011

3) 
The first step on that is dividing by 16, and then dividing their quotient again by 16, so on and adding their remainders. Simply put:
