1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
vodomira [7]
4 years ago
12

Nc3

Engineering
1 answer:
Masja [62]4 years ago
3 0

please give a better explanation of what you want to be answered.

You might be interested in
Create a function (prob3_5) that will take inputs of vectors x and y in feet, scalar N, scalars L and W in feet and scalars T1 a
Shalnov [3]

Answer:

clear, clc

prob3_5([1,2,3],[6,5,7],12,11,22,55,76)

function T=prob3_5(x,y,N,L,W,T1,T2)

w=zeros(1,length(x));

for n=1:2:N

for i=1:length(x)

w(i)=w(i)+(2/pi)*(2/n)*sin(n*pi*x(i)/L).*sinh(n*pi*y(i)/L)/sinh(n*pi*W/L);

end

end

T=(T2-T1)*w+T1;

end

Explanation:

Please input the commands into MATLAB

3 0
3 years ago
An uncharged capacitor and a resistor are connected in series to a source of voltage. If the voltage = 7.41 Volts, C = 11.5 µFar
Musya8 [376]

Answer:

a) RC = 1.03 mseg.

b) Qmax = CV = 85.2 μC

c) Q = 53.9 μC

Explanation:

a) In a RC circuit, during the transient period, the capacitor charges exponentially (starting from 0 due to the voltage in the capacitor can´t change instantaneously) with time, being the exponent -t/RC.

This product RC, which defines the rate at which the capacitor charges, is called the time constant of the circuit.

In this case , it can be calculated as follows:

ζ = R C = 89.4 Ω . 11.5 μF = 1.03 mseg.

b) As the charge begins to build up the capacitor plates, a voltage establishes between plates, that opposes to the battery voltage. When this voltage is equal to the battery one, the capacitor reaches to the maximum charge, which is, by definition, as follows:

Q = C V = 11.5 μF . 7.41 V = 85.2 μC

c) During the charging process, the charge increases following this equation:

Q = CV (1 - e⁻t/RC)

When t = RC, the expression for Q is as follows:

Q = CV ( 1- e⁻¹) = 0.63 x CV = 53.9 μC

6 0
4 years ago
What similarities do wind and solar energy share?
Viefleur [7K]

Answer:

Both come from the sun

Both are reusable sources

and both don't cause pollution

Explanation:

3 0
2 years ago
H. Blasius correlated data on turbulent friction factor in smooth pipes. His equation f s m o o t h ≈ 0.3164 Re − 1 / 4 fsmooth≈
tiny-mole [99]

Answer:

Therefore the angle  the pipe needed to make the static pressure constant along the pipe is θ = 4° 16'

Explanation:

The first step to take is to calculate the the velocity of flow through a pipe

Q =Av

Where Q = is the discharge through pipe

A = Area of the pipe

v = the flow of velocity

We substitute 0.001 m^3/s for Q and 0.03 m for D

Q= Av

0.001=Av

Substitute π/4 D² for A

0.001 = π/4 D² (v)

v = 0.004/πD²

D = he diameter of the pipe

substitute 3 cm  for D

v=  0.004/π * [3 cm * 1 m/100 cm]²

v =1.414 m/s

Obtain fluid properties from the table Kinematic viscosity and Dynamic of water

p =1000 kg /m³

μ= 1.002 * 10^ ⁻³ N.s/m³

Thus,

we write the expression to determine  the Reynolds number of flow

Re = pvD/μ

Re = is the Reynolds number

p =density

μ = dynamic viscosity at 20⁰C

We then substitute 1000 kg /m³ in place of p, 1.002 * 10^ ⁻³ N.s/m³ for μ,

1.414 m/s for v and 0.03 m for D

Thus,

Re = 1000 * 1.414 * 0.03/ 1.002 * 10^ ⁻³ = 42335

The next step is to calculate the friction factor form the Blasius equation

f = 0.3164 (Re)^1/4

f = friction factor

We substitute 42335 for Re

f = 0.3164 (42335)1/4

=0.022

The next step is to write the expression to determine the friction head loss

hl = flv²/2gD

hl = head loss

l = length of pipe

g=  acceleration due to gravity

We then again substitute 0.022 for f, 1.414 m/s for v, 0.03 m for D, and 9.8 m/s² for g.

so,

hl = flv²/2gD

hl/L = 0.022 * 1.414²/2 * 9.81 * 0.03

sinθ = 0.07473

θ = 4° 16'

Therefore the angle  the pipe needed to make the static pressure constant along the pipe is θ = 4° 16'

3 0
3 years ago
To ensure that a vehicle crash is inelastic, vehicle safety designers add crumple zones to vehicles. A crumple zone is a part of
spin [16.1K]

Answer:

Explanation:

Answer: With crumple zones at the front and back of most cars, they absorb much of the energy (and force) in a crash by folding in on itself much like an accordion. ... As Newton's second law explains force = Mass x Acceleration this delay reduces the force that drivers and passengers feel in a crash.Sep 30, 2020

5 0
3 years ago
Other questions:
  • A BS of 5.43 ft is taken on a level rod at a 120-ft distance, and a FS of 8.76 ft is taken on the rod held 1,100 feet away.(a) W
    6·1 answer
  • Steam enters an adiabatic turbine at 8 MPa and 500°C at a rate of 18 kg/s, and exits at 0.2 MPa and 300°C. Determine the rate of
    7·1 answer
  • You are given the following information about a drybatch paving operation. You are going to use one mixer that has a service rat
    10·1 answer
  • The rolling process is governed by the frictional force between the rollers and the workpiece. The frictional force at the entra
    5·1 answer
  • Consider the following statement, which is intended to create an ArrayList named a to store only elements of type Thing. Assume
    9·1 answer
  • Recovery Assignment 3: Engineering ethics 1 1/2 page typed
    6·1 answer
  • Witch measuring tool would be used to determine the diameter of a crankshaft journal
    5·1 answer
  • A person’s ability to use understand and relate to technology is known as :
    10·1 answer
  • From the top of a vertical cliff 80m high, the angles of depression of 2 buoys lying due west of the cliff are 23° and 15° respe
    13·1 answer
  • Which of the following is true about modern hydraulic lifts?
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!