The answer that i found is 4.650
Answer:
The combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
Explanation:
Given;
CH₄ + 2O₂ → CO₂ + 2H₂O, ΔH = -890 kJ/mol
From the combustion reaction above, it can be observed that;
1 mole of methane (CH₄) released 890 kilojoules of energy.
Now, we convert 59.7 grams of methane to moles
CH₄ = 12 + (1x4) = 16 g/mol
59.7 g of CH₄ 
1 mole of methane (CH₄) released 890 kilojoules of energy
3.73125 moles of methane (CH₄) will release ?
= 3.73125 moles x -890 kJ/mol
= -3320.81 kJ
Therefore, the combustion of 59.7 grams of methane releases 3320.81 kilojoules of energy
The DNA is found in the golgi
Answer:
See Explanation
Explanation:
In electrophilic aromatic substitution, the benzene ring undergoes substitution when it is reacted with suitable electrophiles.
The products of electrophilic aromatic substitution depends on the substituents already present on the benzene ring. Some substituents activate the ring towards electrophilic substitution and direct the incoming electrophile to the ortho and para positions on the ring while some substituents deactivate the benzene ring towards electrophilic substitution and direct the incoming electrophlle to the meta position on the ring.
The amide substituent is moderately activating and is an ortho, para director hence the products shown in the mage attached to this answer.
The statement is true. The octet rule refers to the general rule of thumb wherein atoms of main-group elements tend to bond with other atoms in such a way that each atom possesses eight electrons (octet) in their valence shell. They tend to form the same electronic configuration as the noble gases. However, there are some exceptions to this rule. One of which is silane, SiH₄. A hydrogen atom only has 1 valence electron and needs another electron to complete its energy level. This is unlike other atoms, for example, carbon which has 4 valence electrons and needs to form 4 covalent bonds to fill its energy levels. Thus, 4 hydrogen atoms need only 4 more electrons. This is given by the silicon atom which has 4 valence electrons. Therefore, when a silicon atom is bonded to 4 hydrogen atoms, the resulting molecule, SiH₄, is a stable one.