Answer : The fugacity in the solution is, 16 bar.
Explanation : Given,
Fugacity of a pure component = 40 bar
Mole fraction of component = 0.4
Lewis-Randall rule : It states that in an ideal solution, the fugacity of a component is directly proportional to the mole fraction of the component in the solution.
Now we have to calculate the fugacity in the solution.
Formula used :

where,
= fugacity in the solution
= fugacity of a pure component
= mole fraction of component
Now put all the give values in the above formula, we get:


Therefore, the fugacity in the solution is, 16 bar.
Answer: Hydrogen bonds
Explanation: Hydrogen bonds allow two molecules to link together temporarily. Water molecules are made up of two hydrogen atoms and one oxygen atom, held together by polar covalent bonds.
Answer:
pH of resulting solution = 7.98
Explanation:
The balanced equation
HA + NaOH - Na+ + A- + H2O
Number of moles of A = Number of moles of HA = Number of moles of NaOH
= 35.8/1000 * 0.020 = 0.000716 mol
Initial concentration of A = 0.000716/0.0608 = 0.01178 M
pKb = 14 – pKa = 14 -3.9 = 10.1
Kb = 10^{-Kb} = 10^{-10.1} = 7.943 * 10^-11
Kb = [HA][OH-]/[A-]
Kb = a^2/(0.01178 -a) = 7.943 * 10^-11
a^2 + 7.943 * 10^-11 a – 9.357 * 10^-13 = 0
a = 9.673 * 10^-7
OH- = a = 9.673 * 10^-7 M
pOH = -log [OH-] = -log (9.673 * 10^-7) = 6.02
pH = 14-6.02 = 7.98
Im guessing it might be 98.4x0.58, when you rearrange the pressure formula.
I can't see the picture, but in general, I believe it is in dropping from the first energy level above the ground state, to the ground state.