Answer:
A solution is made by dissolving 4.87 g of potassium nitrate in water to a final volume of 86.4 mL solution. The weight/weight % or percent by mass of the solute is :
<u>2.67%</u>
Explanation:
Note : Look at the density of potassium nitrate in water if given in the question.
<u><em>You are calculating </em></u><u><em>weight /Volume</em></u><u><em> not weight/weight % or percent by mass of the solute</em></u>
Here the <u>weight/weight % or percent by mass</u> of the solute is asked : So first convert the<u> VOLUME OF SOLUTION into MASS</u>
Density of potassium nitrate in water KNO3 = 2.11 g/mL

Density = 2.11 g/mL
Volume of solution = 86.4 mL



Mass of Solute = 4.87 g
Mass of Solution = 183.2 g
w/w% of the solute =


w/w%=2.67%
Answer:
A solution in which no more solute can be dissolved in is referred to as SATURATED. In such a solution, the concentration of solute is called SOLUBILITY . When that concentration is reported in moles per liter, it is more specifically called MOLAR SOLUBILITY. A special equilibrium constant called the SOLUBILITY PRODUCT constant is calculated from the molar concentrations of the aqueous components of the dissolution equation.
Explanation:
The solubility of a solute in a solvent is the maximum amount of solute in moles that will be dissolved in 1dm3 of the solvent at a specified temperature. Once the maximum number or concentration has been reached, the solvent can no longer take in solutes and this point in the reaction, the solution is said to be saturated. That is the composition of the saturated solution is not affected by the presence of excess solute. An unsaturated solution has a lower concentration of solute and can dissolve more solutes if added until it becomes saturated.
Solubility when reported in moles per liter is called molar solubility of the solution and it gives a more accurate measurement of yh solubility of a solution. The solubility product constant is calculated from the molar concentrations of the aqueous components of the dissolution equation. This solubility product constant explains the balance between dissolved ions from the salt and undissolved salt in a dissolution equation.
Answer:
1.06 V
Explanation:
The standard reduction potentials are:
Ag^+/Ag E° = 0.7996 V
Ni^2+/Ni E° = -0.257 V
The half-cell and cell reactions for Ni | Ni^2+ || Ag^+ | Ag are
Ni → Ni^2+ + 2e- E° = 0.257 V
<u>2Ag^+ 2e- → 2Ag </u> <u>E° = 0.7996 V
</u>
Ni + 2Ag^+ → Ni^2+ + 2Ag E° = 1.0566 V
To three significant figures, the standard potential for the cell is 1.06 V
.