For an element whose third shell contains six electrons, the appropriate electron configuration is; 1s2 2s2 2p6 3s2 3p4.
The electron configuration shows the distribution of electrons in the shells of an atom and in orbitals.
We have been told that the six electrons are found in the third shell. This shell has n=3 and the configuration of this shell must ns2 np4.
The only electron configuration that meets this standard is 1s2 2s2 2p6 3s2 3p4.
Learn more: brainly.com/question/18704022
Answer:
Freezing point is -2.81°C
Explanation:
34g/342gmol^-1 = 0.0994mol
n = m/mr
Molarity= 0.994/ 0.66 = 1.51M
◇T = -i × m ×Kf
Where ◇T is freezing depression
i= Vant Hoff factor
m = molarity
Kf = freezing content = 1.
860kgmol^-1
◇T =-1 × 1.51 × 1.860 = - 2.81°C
<span>Answer:
Zn(2+) + 2e(-) -------> Zn
1 mole of Zn is deposited by 2F of electricity ...
so 48.9 mole of Zn will be deposited by 48.9 X 2F = 97.8 F of electricity...
as 1F = 96500 C
so 97.8 F = 97.8 X 96500 = 9437700 C of electricity...</span>
Since obliquity is the angle between the axis of rotation and the direction perpendicular to the orbital plane, it changes as the orbital plane changes due to the influence of other planets. But the axis of rotation can also move (axial precession), due to torque exerted by the sun on a planet's equatorial bulge.
(Got it from google )
Answer:
The density is 1,35 g/cm3
Explanation:
We use the formula for calculate the density
δ =m/V =12,2g / 9,0 cm3= 1,35 g/cm3