Answer:
1.) Waves carry energy through empty space or through a medium without transporting matter. While all waves can transmit energy through a medium, certain waves can also transmit energy through empty space. ... When waves travel through a medium, the particles of the medium are not carried along with the wave.
2.) Mechanical Waves are waves which propagate through a material medium (solid, liquid, or gas) at a wave speed which depends on the elastic and inertial properties of that medium. There are two basic types of wave motion for mechanical waves: longitudinal waves and transverse waves. Longitudinal waves vibrating in the direction of propagation while Transverse waves vibrate at right angles to the direction of its propagation.
3.) They can carry a little energy or a lot of energy. They can be transverse or longitudinal. However, all waves have common properties—amplitude, wavelength, frequency, and speed. Amplitude describes how far the medium in a wave moves.
I hope this helps!
The Milky Way is a spiral galaxy type so it has arms sort of like an octopus. We live in the Milky Way
The distance at which the man slips is 0.3 m
Newton's Second Law, F = ma, is used to calculate the braking distance. By dividing the mass of the car by the gravitational acceleration, one may determine its weight. The weight of the car multiplied by the coefficient of friction equals the brake force.
Given-
mass of man= 70 kg
frictional coefficient μ=0.02
mass of body thrown= m2 = 3kg
let s be the stopping distance
we know that frictional force = F= μN
=μMg= 0.02 x 70 x 10
=14 N
∴acceleration, a= 14/70 = 0.2 m/s²
now on applying conservation of linear momentum
pi=pf pi=0 (initially at rest)
0=m1v1-m2v2 (v1= velocity of man) (v2=velocity of body= 8m/s
v1= m2v2 /m1= 0.3 m/s
we know,
v²- u² = -2as
0- (0.3) ²= -2 x 0.2 x 5
s= 0.09/0.4 ≈ 0.3 m
Learn more about distance here-
brainly.com/question/15172156
#SPJ4
<span>During winter for a given hemisphere, solar radiation reaches the lowest period of its annual cycle due to the tilt of the earth on its axis. As the earth rotates around the sun, this tilt occludes a portion of the energy released by the sun as it diffuses in the atmosphere.</span>
Light that enters the new medium <em>perpendicular to the surface</em> keeps sailing straight through the new medium unrefracted (in the same direction).
Perpendicular to the surface is the "normal" to the surface. So the angle of incidence (angle between the laser and the normal) is zero, and the law of refraction (just like the law of reflection) predicts an angle of zero between the normal and the refracted (or the reflected) beam.
Moral of the story: If you want your laser to keep going in the same direction after it enters the water, or to bounce back in the same direction it came from when it hits the mirror, then shoot it <em>straight on</em> to the surface, perpendicular to it.