The answer is 57.14%.
First we need to calculate molar mass of <span>NaHCO3. Molar mass is mass of 1 mole of a substance. It is the sum of relative atomic masses, which are masses of atoms of the elements.
Relative atomic mass of Na is 22.99 g
</span><span>Relative atomic mass of H is 1 g
</span><span>Relative atomic mass of C is 12.01 g
</span><span>Relative atomic mass of O is 16 g.
</span>
Molar mass of <span>NaHCO3 is:
22.99 g + 1 g + 12.01 g + 3 </span>· <span>16 g = 84 g
Now, mass of oxygen in </span><span>NaHCO3 is:
3 </span>· 16 g = 48 g
mass percent of oxygen in <span>NaHCO3:
48 g </span>÷ 84 g · 100% = 57.14%
Therefore, <span>the mass percent of oxygen in sodium bicarbonate is 57.14%.</span>
Answer:
C. Y & Z
Explanation:
V, W are imaginary metals here because their valence electrons are typically less than 4. X, Y, Z are non-metals and have higher valence electrons. Here, if V or W bind with X, Y, or Z we make ionic bond (because metal + non metal = ionic). But, if X binds with Y or Z or any combinations of any two of the three non-metals results in covalent bond (non metal + non metal = covalent).
Thus, Y and Z make covalent.
A. the distance between towns
Answer is: 0,0095 mol of hydrogen gas will be produced in reaction.
Chemical reaction: Ca + 2HCl → CaCl₂ + H₂.
m(Ca) = 0,38 g.
n(H₂) = ?
n(Ca) = m(Ca) ÷ M(Ca).
n(Ca) = 0,38 g ÷ 40 g/mol
n(Ca) = 0,0095 mol.
from reaction: n(Ca) : n(H₂) = 1 : 1.
n(H₂) = n(Ca) = 0,0095 mol.
n - amount of substance.