Answer:
A catalyst is a chemical substance that alters the rate of chemical reaction not consumed by the reaction. Hence, a catalyst can be recovered chen unchanged at the ends of chemical reaction. Catalyst can be divided into two typ the basis whether it speeds up or slowdowns the rate of chemical reaction. The positive catalyst and negative catalyst.
Answer:
16.89g of PbBr2
Explanation:
First, let us calculate the number of mole of Pb(NO3)2. This is illustrated below:
Molarity of Pb(NO3)2 = 0.595M
Volume = 77mL = 77/1000 = 0.077L
Mole =?
Molarity = mole/Volume
Mole = Molarity x Volume
Mole of Pb(NO3)2 = 0.595x0.077
Mole of Pb(NO3)2 = 0.046mol
Convert 0.046mol of Pb(NO3)2 to grams as shown below:
Molar Mass of Pb(NO3)2 =
207 + 2[ 14 + (16x3)]
= 207 + 2[14 + 48]
= 207 + 2[62] = 207 +124 = 331g/mol
Mass of Pb(NO3)2 = number of mole x molar Mass = 0.046 x 331 = 15.23g
Molar Mass of PbBr2 = 207 + (2x80) = 207 + 160 = 367g/mol
Equation for the reaction is given below:
Pb(NO3)2 + CuBr2 —> PbBr2 + Cu(NO3)2
From the equation above,
331g of Pb(NO3)2 precipitated 367g of PbBr2
Therefore, 15.23g of Pb(NO3)2 will precipitate = (15.23x367)/331 = 16.89g of PbBr2
Answer:
Explanation if an object is in motion and more force is applied to it, the object will begin moving faster. If two objects have the same mass and a greater force is applied to one of the objects, the object which receives the greater force will change speeds more quickly.:
The answer is 4.41x10^1 m.
Explanation:
You would use this formula to calculate it
λ = C/f
Where,
λ (Lambda) = Wavelength in meters
c = Speed of Light (299,792,458 m/s)
f = Frequency
So we have the frequency, 68 Hz, and we have the speed of light. Now we put it into the equation and it will look like this:
λ= (299,792,458 m/s) / (68 Hz)
λ= 4.41x10^1
Answer:
ΔS° = -268.13 J/K
Explanation:
Let's consider the following balanced equation.
3 NO₂(g) + H₂O(l) → 2 HNO₃(l) + NO(g)
We can calculate the standard entropy change of a reaction (ΔS°) using the following expression:
ΔS° = ∑np.Sp° - ∑nr.Sr°
where,
ni are the moles of reactants and products
Si are the standard molar entropies of reactants and products
ΔS° = [2 mol × S°(HNO₃(l)) + 1 mol × S°(NO(g))] - [3 mol × S°(NO₂(g)) + 1 mol × S°(H₂O(l))]
ΔS° = [2 mol × 155.6 J/K.mol + 1 mol × 210.76 J/K.mol] - [3 mol × 240.06 J/K.mol + 1 mol × 69.91 J/k.mol]
ΔS° = -268.13 J/K