Answer:
5 units
Step-by-step explanation:
3x + 4y = 8
4y = -3x+8
y = -3/4+2
The shortest distance between a point and a line is the perpendicular line.
Slope of the perpendicular line: 4/3 and point (-3,-2)
b = -2-(4/3)(-3) = 2
Equation of the perpendicular line: y=4/3x+2
y is equal y
4/3x+2= -3/4x+2
4/3x +3/4x = 2-2
x = 0
Plug x=0 into one of the equations to find y
y = 4/3(0) + 2
y = 2
(0,2) and (-3,-2)
Distance = sqrt [(-3-0)^2 + (-2-2)^2]
Sqrt (-3)^2+ (-4)^2
Sqrt 25 = 5
The given number which is 2A193A411 is written in Base 11. Base 11 number is also called undecimal system. The digits of Base 11 number are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10. Since 10 is not accepted as a digit, then we have to substitute a variable which is A = 10. Hence, the digits of a Base 11 number are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, and A.
Answer:
(1/2) * A + (1/2) * B <= 100; for A => 50; for B => 20
(5000) * A + (30000) * B <= 1500000; for A => 50; for B => 20
Step-by-step explanation:
There are two inequalities in mind, the first of the surface and the second of the price. Always bearing in mind that the minimum are 50 of A and 20 of B.
The first
A occupies 1/2 m and B occupies 1/2 m of surface, and the limit is 100 m of surface. Thus:
(1/2) * A + (1/2) * B <= 100; for A => 50; for B => 20
The second:
A costs 5,000 and B costs 30,000, and the limit is 1,500,000. Therefore:
(5000) * A + (30000) * B <= 1500000; for A => 50; for B => 20
I really hope this helps you
Soh Cah Toa
Sine of the angle = opposite side over the hypotenuse
sin(42°) = 6.5/h
rearrange, solve for h
h = 6.5/sin(42°)
h = 9.7 cm
For the other triangle, the angle is unknown. I'd split it into two right triangles; down angle x since it is an isosceles it will be bisected into two equivalent triangles.
The hypotenuse we just found is now split in half. 9.7/2 = 4.9 base of the new smaller right triangle.
The new hypotenuse of the smaller triangle is 7.4 cm
Then you have..
sin(x/2) = 4.9/7.4
sin(x/2) = 0.67
use inverse sine function
arcSin(0.67) = x/2
41 = x/2
82° = x
There are many ways to solve this problem. This is just what I thought of first using trig.