Answer:
Right
Explanation:
electromagnetic waves can travel through space (a vacuum) because it doesn't need a medium and its particles to propagate whereas a mechanical wave needs a medium to propagate. For example sound is a mechanical wave, sound vibrates off a mediums particles to propagate and for sound to be heard and travel
Survey research method uses questionnaires to collect information about the participants in a study.It is commonly used method of collecting information about a population of interest.
Sulphur
The missing element is sulphur
Here the compound is composed of element X and chlorine.
it is given,
XCl (6) ----> 6Cl
mass = 13.1%
it is X and Cl = 100%-13.10%
= 86.90%
chlorine = 86.90
X = 13.10
We assume 100g of sample
so according to the above solved data, in 100g of sample we have 86.90 g of chlorine.
now we split that chlorine into two moles of chlorine.
- Every mole of sale has 35.45 grams of sales. 2.451 moles of seal are mine after that.
- We are aware that cl is six times more than X. To find the moles of X, I must divide this number by six.
- we discover that we have 0.4086 moles of X when we divide this by six.
- We obtain those moles of X from 13.10 g of X.
- Given that Mueller masses grams per mole, I can compute the molar mass.
- 13.10 grams of X are contained in 0.4086 moles of X.
- Or, to put it another way, each remote has a molar mass of 32–06 grams.
- The element with this molar mass is sulfur, as I can see from the periodic table.
- Okay, so the element we're looking for in this situation is sulfur.
To learn more about finding missing element visit;
brainly.com/question/14238796
#SPJ4
Explanation:
We will use the equations of constant acceleration to find out
and time t.
As we know that the initial speed is zero. So
(a)

×
m
×
m/s


= 
= 4.356×
m/s²
(b)


= 6.8870×
s
(c)
Σ
= (9.11×
)(4.356×
m/s²)
= 3.968×
N
Answer:
The value of A is 1.5m/s^2 and B is 0.5m/s^³
Explanation:
The mass of the rocket = 2540 kg.
Given velocity, v(t)=At + Bt^2
Given t =0
a= 1.50 m/s^2
Now, velocity V(t) = A*t + B*t²
If, V(0) = 0, V(1) = 2
a(t) = dV/dt = A+2B × t
a(0) = 1.5m/s^²
1.5m/s^² = A + 2B × 0
A = 1.5m/s^2
now,
V(1) = 2 = A× 1 + B× 1^²
1.5× 1 +B× 1 = 2m/s
B = 2-1.5
B = 0.5m/s^³
Now Check V(t) = A× t + B × t^²
So, V(1) = A× (1s) + B× (1s)^² = 1.5m/s^² × 1s + 0.5m/s^³ × (1s)^² = 1.5m/s + 0.5m/s = 2m/s
Therefore, B is having a unit of m/s^³ so B× (1s)^² has units of velocity (m/s)