Answer:
<em>1.228 x </em>
<em> mm </em>
<em></em>
Explanation:
diameter of aluminium bar D = 40 mm
diameter of hole d = 30 mm
compressive Load F = 180 kN = 180 x
N
modulus of elasticity E = 85 GN/m^2 = 85 x
Pa
length of bar L = 600 mm
length of hole = 100 mm
true length of bar = 600 - 100 = 500 mm
area of the bar A =
=
= 1256.8 mm^2
area of hole a =
=
= 549.85 mm^2
Total contraction of the bar =
total contraction =
==>
= <em>1.228 x </em>
<em> mm </em>
Answer:
1.5F
Explanation:
Using
E= F/q
Where F= force
E= electric field
q=charge
F= Eq
So if qis tripled and E is halved we have
F= (E/2)3q
F= 1.5Eq=>> 1.5F
Answer:
Electrical Resistance is a measure of the opposition to current flow in an electrical circuit
Types: variable resistance and set resistance
Explanation:
Answer:
Explanation:
The form of Newton's 2nd Law that we use for this is:
F - f = ma where F is the Force pulling the mass down the ramp forward, f is the friction trying to keep it from moving forward, m is the mass and a is the acceleration (and our unknown).
We know mass and we can find f, but we don't have F. But we can solve for that by rewriting our main equation to reflect F:
That's everything we need.
w is weight: 6.0(9.8). Filling in:
6.0(9.8)sin20 - .15(6.0)(9.8) = 6.0a and
2.0 × 10¹ - 8.8 = 6.0a and
11 = 6.0a so
a = 1.8 m/s/s
Answer:

Explanation:
Rydberg formula is used to calculate the wavelengths of the spectral lines of many chemical elements. For the hydrogen, is defined as:

Where
is the Rydberg constant for hydrogen and
,
are the lower energy state and the higher energy state, respectively.
