Answer:
M_Train>> m_car a_train <a_car
Explanation:
To start the movement of the train or the car, the motorcycle applies a force on the wheels, which starts the acceleration in the case of the train, it has a much greater mass than that of the car, for which to obtain the same acceleration necessary a much greater force
a = F / m
as the mass of the train is greater than that of the car.
a_train <a_car
Something similar happens when the vehicles stop, the engine stops applying force forward and the brakes apply a force backward that creates a negative acceleration that slows down, again as the mass of the train is much greater than the of the car its negative acceleration is much less.
It is good to clarify that to compensate for this the trains have a braking system on all wheels
From what i know it is c. it is a lever
Answer:
O a force that opposes motion
Answer:
864 mT
Explanation:
The magnetic field due to a long straight wire B = μ₀i/2πR where μ₀ = permeability of free space = 4π × 10⁻⁷ H/m, i = current in wire, and R = distance from center of wire to point of magnetic field.
The magnitude of magnetic field due to the first wire carrying current i = 2.70 A at distance R which is mid-point between the wires is B = μ₀i/2πR.
Since the other wire also carries the same current at distance R, the magnitude of the magnetic field is B = μ₀i/2πR.
The resultant magnetic field at B is B' = B + B = 2B = 2(μ₀i/2πR) = μ₀i/πR
Now R = 2.50 cm/2 = 1.25 cm = 1.25 × 10⁻² m and i = 2.70 A.
Substituting these into B' = μ₀i/πR, we have
B' = 4π × 10⁻⁷ H/m × 2.70 A/π(1.25 × 10⁻² m)
B = 10.8/1.25 × 10⁻⁵ T
B = 8.64 × 10⁻⁵ T
B = 864 × 10⁻³ T
B = 864 mT