Answer:
The final temperature of sulfur dioxide gas is 215.43 C
Explanation:
Gay Lussac's Law establishes the relationship between the temperature and the pressure of a gas when the volume is constant. This law says that if the temperature increases the pressure increases, while if the temperature decreases the pressure decreases. In other words, the pressure and temperature are directly proportional quantities.
Mathematically, the Gay-Lussac law states that, when a gas undergoes a transformation at constant volume, the quotient of the pressure exerted by the temperature of the gas remains constant:

Assuming you have a gas that is at a pressure P1 and at a temperature T1 at the beginning of the experiment, by varying the temperature to a new value T2, then the pressure will change to P2, and it will be true:

The reference temperature is the absolute temperature (in degrees Kelvin)
In this case:
- P1= 0.450 atm
- T1= 20 C= 293.15 K (being 0 C= 273.15 K)
- P2=0.750 atm
- T2= ?
Replacing:

Solving:


T2=488.58 K
Being 273.15 K= 0 C, then 488.58 K= 215.43 C
<u><em>The final temperature of sulfur dioxide gas is 215.43 C</em></u>
The answer for this question is the smallest particle of matter.
433.8267 g/mol according to Chemical aid
An atomic mass unit is defined as a mass equal to one twelfth the mass of an atom of carbon-12. The mass of any isotope of any element is expressed in relation to the carbon-12 standard. For example, one atom of helium-4 has a mass of 4.0026 amu. An atom of sulfur-32 has a mass of 31.972 amu.