Answer:-
,
, ![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
Solution:- We are asked to calculate the molarity of sodium carbonate solution as well as the sodium and carbonate ions.
Molarity is moles of solute per liter of solution. We have been given with 6.73 grams of sodium carbonate and the volume of solution is 250.mL. Grams are converted to moles and mL are converted to L and finally the moles are divided by liters to get the molarity of sodium carbonate.
Molar mass of sodium carbonate is 105.99 gram per mol. The calculations for the molarity of sodium carbonate are shown below:

= 
So, molarity of sodium carbonate solution is 0.254 M.
sodium carbonate dissociate to give the ions as:

There is 1:2 mol ratio between sodium carbonate and sodium ion. So, the molarity of sodium ion will be two times of sodium carbonate molarity.
= 0.508 M
There is 1:1 mol ratio between sodium carbonate and carbonate ion. So, the molarity of carbonate ion will be equal to the molarity of sodium carbonate.
![[CO_3^2^-]=0.254M](https://tex.z-dn.net/?f=%5BCO_3%5E2%5E-%5D%3D0.254M)
1. A radical is a reactive intermediate with a single ____________ electron, formed by ____________ of a covalent bond.
1. A: Unpaired, and homolysis
2. Allylic radicals are stabilized by ____________ , making them ____________ stable than tertiary radicals.
2. A: Resonance, and more
3. A compound that contains an especially weak bond that serves as a source of radicals is called a radical ____________ .
3. A: Initiator
4. Treatment of cyclohexene with N-bromosuccinimide in the presence of light leads to ____________ by ____________ intermediates.
4. A: Allylic substitution by radical
Answer:
Water = compound, Orange juice with extra pulp = suspension, Milk = colloid, Calcium = Element, Iced tea = solution.
Explanation: