Complete Question
A student is extracting caffeine from water with dichloromethane. The K value is 4.6. If the student starts with a total of 40 mg of caffeine in 2 mL of water and extracts once with 6 mL of dichloromethane
The experiment above is repeated, but instead of extracting once with 6 mL the extraction is done three times with 2 mL of dichloromethane each time. How much caffeine will be in each dichloromethane extract?
Answer:
The mass of caffeine extracted is 
Explanation:
From the question above we are told that
The K value is 
The mass of the caffeine is 
The volume of water is 
The volume of caffeine is 
The number of times the extraction was done is n = 3
Generally the mass of caffeine that will be extracted is
![P = m * [\frac{V}{K * v_c + V} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%20m%20%20%2A%20%20%5B%5Cfrac%7BV%7D%7BK%20%2A%20%20v_c%20%2B%20V%7D%20%5D%5E3)
substituting values
![P = 40 * [\frac{2}{4.6 * 2 + 2} ]^3](https://tex.z-dn.net/?f=P%20%3D%20%2040%20%20%20%2A%20%20%5B%5Cfrac%7B2%7D%7B4.6%20%2A%20%202%20%2B%202%7D%20%5D%5E3)

25.9 kJ/mol. (3 sig. fig. as in the heat capacity.)
<h3>Explanation</h3>
The process:
.
How many moles of this process?
Relative atomic mass from a modern periodic table:
- K: 39.098;
- N: 14.007;
- O: 15.999.
Molar mass of
:
.
Number of moles of the process = Number of moles of
dissolved:
.
What's the enthalpy change of this process?
for
. By convention, the enthalpy change
measures the energy change for each mole of a process.
.
The heat capacity is the least accurate number in these calculation. It comes with three significant figures. As a result, round the final result to three significant figures. However, make sure you keep at least one additional figure to minimize the risk of rounding errors during the calculation.