The specific heat of a material is 0.137 J/g°C.
<u>Explanation:</u>
The specific heat formula relates the heat energy required to perform a certain reaction with the mass of the reactants, specific heat and the change in temperature during the reaction.
Q = mcΔT
Here m is the mass, Q is the heat energy required, ΔT is the change in temperature and c is the specific heat.
So, if we have to determine the specific heat of the object, then we have to determine the ratio of heat required to mass of the object with change in time, as shown below.

As mass of the object m is given as 35 g and the energy is said to be absorbed so Q = 96 J.
The temperature values given should be changed from kelvin to celsius first. So, initial temperature 293 K will become 293-273.15 = 19.85°C.
Similarly, the final temperature will be 313 - 273.15 = 39.85°C.
Then, ΔT = 39.85-19.85 = 20 °C
Then,

So, the specific heat of a material is 0.137 J/g°C.
<h3>
Answer:</h3>
250.756 moles He
<h3>
Explanation:</h3>
From the question we are given;
Volume, L = 685 L
Temperature, T = 621 K
Pressure, P = 189 × 10 kPa
We are required to calculate the number of moles of the gas,
Using the Ideal gas equation,
PV = nRT, where P is the pressure, V is the volume, T is the temperature, n is the number of moles, and R is the ideal gas constant.
We can replace the known variables and constant in the equation to get the unknown variable, n.
Using ideal gas constant as 8.3145 L.kPa/K/mol



n = 250.756 moles
The moles of helium contained in the sphere is 250.756 moles
Answer:
Strontium (St)
Explanation:
The atom that will have a larger radius than zinc is strontium, Sr.
Atomic radius is defined as the half of the inter-nuclear distance between two covalently bonded atoms of non-metallic elements or half of the distance between two nuclei in the solid state of metals.
- Across the period atomic radii decreases progressively due to the increase in nuclear charge.
- Down a group atomic radii increase progressively due to the successive shells of electrons being added.
- Since strontium satisfies the criteria, it has the larger atomic radius.
Oxygen is needed to carry out a lot of biochemical processes in the body. If the amount of oxygen available to the blood decreases significantly a lot of things will go wrong in the body. For instance, lack of adequate oxygen will lead to the death of neurons which will eventually leads to brain cells death and irreparable brain damage. Oxygen is also needed for cellular respiration, without respiration, there will not be oxygen for carrying out various cellular activities and this will result into death. Oxygen deprivation will also leads to difficulty in breathing and other associated problems.