Answer:
her speed is constant as she runs, and her av. speed is 3 m/sec
Explanation:
av speed is total distance divided by total time, so 150/50=3
Answer:
Well, carbon monoxide can be created from formic acid by adding sulphuric acid which will dehydrate said formic acid:
HCOOH
−
→
−
−
−
H
2
SO
4
CO+H
2
O
HCOOH→HX2SOX4CO+HX2O
Therefore, we can imagine the reverse reaction theoretically, which would make carbon monoxide an acidic oxide. However, the forward reaction does not proceed easily and it needs both the high acidity of sulphuric acid and its strong dehydrative properties to actually work. And your question mentions using hot, concentrated sodium hydroxide to make the reverse one work.
Most oxides that are classified as acidic or basic either have a very electrophilic central atom (e.g.
CO
2
COX2
) which can be attacked by the weak nucleophile water (which in turn can then release an acidic proton), or they have a high charge density on the oxygen which allows it to abstract a proton from water directly. Carbon monoxide is neither. If you check out its molecular orbitals, you will notice that even though carbon is partially positive it has the largest HOMO contribution, meaning a proton would be more likely to attatch to the carbon side — which doesn’t want one at all. The LUMO is, luckily, also more carbon-centred, meaning nucleophilic attacks on carbon are possible. However, it is also degenerate due to the double bond so that an attack is not favoured.
Thus, the carbon monoxide molecule is one that won’t react with water at all and totally defies the concept of acidic/basic oxides.
Abbreviations:
HOMO is a widely used abbreviation for the Highest Occupied Molecular Orbital, i.e. the one with the highest energy that still contains electrons. It is usually the orbital that will attack nucleophilicly or that will be attacked electrophilicly.
LUMO is a widely used abbreviation for the Lowest Unoccupied Molecular Orbital, i.e. the virtual (unoccupied) orbital that has the lowest energy. When considering a nucleophilic attack, the attacking electrons will usually interact with the LUMO. Electrophiles attack with other molecules’ HOMO with their LUMO.
Explanation:
Answer:
The hydrogen ion concentrations associated with these pH value 7.35 is 
The hydrogen ion concentrations associated with these pH value 7.45 is
.
Explanation:
To calculate the pH of the solution, we use the equation:
![pH=-\log[H^+]](https://tex.z-dn.net/?f=pH%3D-%5Clog%5BH%5E%2B%5D)
We are given:
1) pH = 7.35
Putting values in above equation, we get:
![7.35=-\log[H^+]](https://tex.z-dn.net/?f=7.35%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=4.467\times 10^{-8} M\approx 4.5\times 10^{-8} M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D4.467%5Ctimes%2010%5E%7B-8%7D%20M%5Capprox%204.5%5Ctimes%2010%5E%7B-8%7D%20M)
The hydrogen ion concentrations associated with these pH value 7.35 is 
2) pH = 7.45
Putting values in above equation, we get:
![7.45=-\log[H^+]](https://tex.z-dn.net/?f=7.45%3D-%5Clog%5BH%5E%2B%5D)
![[H^+]=3.548\times 10^{-8}M \approx 3.6\times 10^{-8} M](https://tex.z-dn.net/?f=%5BH%5E%2B%5D%3D3.548%5Ctimes%2010%5E%7B-8%7DM%20%5Capprox%203.6%5Ctimes%2010%5E%7B-8%7D%20M)
The hydrogen ion concentrations associated with these pH value 7.45 is
.
Mass of the water is 2.63 g.
<u>Explanation:</u>
Mass of the water, m = ? g
Temperature, ΔT = 15 °C
Heat absorbed, q = 165 J
Specific heat capacity, c = 4.18 J / g °C
q = m × c × ΔT
Now, we have to find the mass of the water by rewriting the above equation as,
m = 
Now Plugin the above values in the equation as,
m =
= 2.63 g
So the mass of the water is found as 2.63 g.
A phase change from Gas to liquid means that it was cold outside and so the molecules went from being very free moving to forming bonds with one another due to the cold.