Answer:
Explanation:
Given
Initial reading on scale =40 N
So, we can conclude that weight of the sack is 40 N
After this a 10 N force is applied upward on the sack such that the net force becomes (40-10) N downward (because downward force is more)
This net downward force is the resultant of earth graviational pull and the applied upward force.
So, this downward force acts on the machine which inturn applies an upaward force of same magnitude called Normal reaction.
This situation can be diagramatically represented by figure given below
Answer:
1.98 atm
Explanation:
Given that:
Temperature = 28.0 °C
The conversion of T( °C) to T(K) is shown below:
T(K) = T( °C) + 273.15
So,
T₁ = (28 + 273.15) K = 301.15 K
n = 1
V = 0.500 L
Using ideal gas equation as:
PV=nRT
where,
P is the pressure
V is the volume
n is the number of moles
T is the temperature
R is Gas constant having value = 0.0821 L atm/ K mol
Applying the equation as:
P × 0.500 L = 1 ×0.0821 L atm/ K mol × 301.15 K
⇒P (ideal) = 49.45 atm
Using Van der Waal's equation
R = 0.0821 L atm/ K mol
Where, a and b are constants.
For Ar, given that:
So, a = 1.345 atm L² / mol²
b = 0.03219 L / mol
So,


⇒P (real) = 47.47 atm
Difference in pressure = 49.45 atm - 47.47 atm = 1.98 atm
Answer:
a car
A sled sliding across snow or ice.
a ball down a hill
mercury
Explanation: