Answer:
As the particles move further away from their normal position (up towards the wave crest or down towards the trough), they slow down.
Explanation:
This means that some of their kinetic energy has been converted into potential energy – the energy of particles in a wave oscillates between kinetic and potential energy. Hope that this helps you and have a great day :)
The pulse site located at the point where the upper leg bends is called the femoral. It is an artery found in the thigh. It is large and is deemed as the main arterial supply for the lower part of the body. It is known as the second artery that is the largest. It is being used as the catheter access artery. From it, diagnostics for the heart, brain, arms, kidney and other parts can be directed to the other arterial system. It can also be used as a source to draw blood that is from the arteries when there is low blood pressure.
Two neutral objects will not have any electric force of attraction or repulsion between them.
<h3>What is the condition for the electric force between two objects?</h3>
As we know from the electrostatics that whenever there are two charges having a positive charge on one and a negative on the other will attract each other
similarly, if they are having like charges which are both of them having positive or both of them having a negative charge then there will be a force of repulsion between them.
But if both of them or even one of them is neutral then there will not be any electric force between them.
Thus neutral objects will not have any electric force of attraction or repulsion between them.
To know more about the nature of charged particles follow
brainly.com/question/22492496
Hello!
First one we can use that PE=mgh so we have
4.37*10^5J/(9.12*10^3kg*9.80m/s^2)= 4.89m
Second one we can use Newton’s Second Law
F=ma and in this case F=mg so we have
g= 3.28*10^-2N/6*10^-3kg = 5.47m/s^2
Hope this helps. Any questions please ask. Thank you.
Answer:
Explanation:
Call the bike on the right A
Call the bike on the left B
The car begins it's time when it passes A
4 minutes later, it passes B.
But B has moved in 4 minutes and that is the key to the problem.
How far has B moved.
t = 4 minutes = 4/60 hours = 1/15 of an hour.
d = ?
rate = 30 km / hr
d = r * t
d = 30 km/hr * 1/15 hours = 2 km
The distance between the bikes is 5 km.
So the car has traveled 5 - 2 = 3 km
d = 3 km
r = ?
t = 4 minutes = 1/15 hour
r = d/t = 3/(1/15)= 3 / 0.066666666 = 45 km/hr.