1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddika [18.5K]
4 years ago
7

State Pascal''s principle. Give and example of its use

Physics
1 answer:
BabaBlast [244]4 years ago
4 0
Well, it is also known as the transmission of fluid pressure. So, it is a principle in fluid mechanics that says that pressure exerted anywhere in a confined incompressible fluid is transmitted equally in all directions throughout the fluid such as the the pressure variations.
You might be interested in
A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 1.90 m/s2
Ahat [919]

Answer:

Approximately 0.608 (assuming that g = 9.81\; \rm N\cdot kg^{-1}.)

Explanation:

The question provided very little information about this motion. Therefore, replace these quantities with letters. These unknown quantities should not appear in the conclusion if this question is actually solvable.

  • Let m represent the mass of this car.
  • Let r represent the radius of the circular track.

This answer will approach this question in two steps:

  • Step one: determine the centripetal force when the car is about to skid.
  • Step two: calculate the coefficient of static friction.

For simplicity, let a_{T} represent the tangential acceleration (1.90\; \rm m \cdot s^{-2}) of this car.

<h3>Centripetal Force when the car is about to skid</h3>

The question gave no information about the distance that the car has travelled before it skidded. However, information about the angular displacement is indeed available: the car travelled (without skidding) one-quarter of a circle, which corresponds to 90^\circ or \displaystyle \frac{\pi}{2} radians.

The angular acceleration of this car can be found as \displaystyle \alpha = \frac{a_{T}}{r}. (a_T is the tangential acceleration of the car, and r is the radius of this circular track.)

Consider the SUVAT equation that relates initial and final (tangential) velocity (u and v) to (tangential) acceleration a_{T} and displacement x:

v^2 - u^2 = 2\, a_{T}\cdot x.

The idea is to solve for the final angular velocity using the angular analogy of that equation:

\left(\omega(\text{final})\right)^2 - \left(\omega(\text{initial})\right)^2 = 2\, \alpha\, \theta.

In this equation, \theta represents angular displacement. For this motion in particular:

  • \omega(\text{initial}) = 0 since the car was initially not moving.
  • \theta = \displaystyle \frac{\pi}{2} since the car travelled one-quarter of the circle.

Solve this equation for \omega(\text{final}) in terms of a_T and r:

\begin{aligned}\omega(\text{final}) &= \sqrt{2\cdot \frac{a_T}{r} \cdot \frac{\pi}{2}} = \sqrt{\frac{\pi\, a_T}{r}}\end{aligned}.

Let m represent the mass of this car. The centripetal force at this moment would be:

\begin{aligned}F_C &= m\, \omega^2\, r \\ &=m\cdot \left(\frac{\pi\, a_T}{r}\right)\cdot r = \pi\, m\, a_T\end{aligned}.

<h3>Coefficient of static friction between the car and the track</h3>

Since the track is flat (not banked,) the only force on the car in the horizontal direction would be the static friction between the tires and the track. Also, the size of the normal force on the car should be equal to its weight, m\, g.

Note that even if the size of the normal force does not change, the size of the static friction between the surfaces can vary. However, when the car is just about to skid, the centripetal force at that very moment should be equal to the maximum static friction between these surfaces. It is the largest-possible static friction that depends on the coefficient of static friction.

Let \mu_s denote the coefficient of static friction. The size of the largest-possible static friction between the car and the track would be:

F(\text{static, max}) = \mu_s\, N = \mu_s\, m\, g.

The size of this force should be equal to that of the centripetal force when the car is about to skid:

\mu_s\, m\, g = \pi\, m\, a_{T}.

Solve this equation for \mu_s:

\mu_s = \displaystyle \frac{\pi\, a_T}{g}.

Indeed, the expression for \mu_s does not include any unknown letter. Let g = 9.81\; \rm N\cdot kg^{-1}. Evaluate this expression for a_T = 1.90\;\rm m \cdot s^{-2}:

\mu_s = \displaystyle \frac{\pi\, a_T}{g} \approx 0.608.

(Three significant figures.)

7 0
3 years ago
Monochromatic light of a given wavelength is incident on a metal surface. however, no photoelectrons are emitted. if electrons a
kifflom [539]
If the object, ends up with a positive charge, then it is missing electrons. if it is missing electrons, then it must have been removed form the object during the rubbing process.
5 0
3 years ago
If you double the velocity of a moving object, how is it's momentum affected?
Allushta [10]
Well momentum is = to Mass*Velocity so let's use an example to figure this out

If I weighed 50kg and I was jogging at 3m/s then I broke into a run at 6m/s how will me momentum be affected?
3m/s*50kg=150
6m/s*50kg=300

So as you can see by doubling the velocity you also double the momentum
8 0
4 years ago
an object with a mass of 5kg is moving with an initial velocity of 20m/s.the object accelerates at a rate of 15m/s/s for 8s.what
Alinara [238K]

It doesn't matter what the object's initial velocity is, or how long
the acceleration lasts.  All that matters is the object's mass and
acceleration.

Force = (mass) x (acceleration) =

                (5kg) x (15 m/s²) =

                         75 kg-m/s² = <em>75 newtons .</em>


5 0
3 years ago
Which of the following is not an example I work?? Some please help
n200080 [17]
B. picking up a box off the floor
8 0
3 years ago
Read 2 more answers
Other questions:
  • Protons have a blank change
    9·2 answers
  • Which one of the following scenarios accurately describes a condition in which resonance can occur? A. A vibrating tuning fork i
    14·1 answer
  • Could you please assist me, thank you kindly.
    10·1 answer
  • Which describes the relationship between photon energy and the color of light?
    8·2 answers
  • One degree Celsius indicates the same temperature change as
    12·1 answer
  • Explain how the earth is round and not flat
    14·2 answers
  • Indicate whether the statement is true or false. Any force that causes an object to move in a circular path is called a centripe
    10·1 answer
  • I drop an egg from a certain distance and it takes 3.74 seconds to reach the ground. How high up was the egg?
    12·1 answer
  • What do scientist do to receive suggestions an criticism of their research from other scientists?
    12·2 answers
  • 3. Two people push on a car with a force of 5150 N, and the car moves a distance of 8.0m. What is the
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!