If the bag is motionless, then it's not accelerating up or down.
That fact right there tells you that the net vertical force on it
is zero. So the sum of any upward forces on it is exactly equal
to the downward gravitational force ... the bag's "weight".
If the bag is suspended from a single rope, then the tension
in the rope must be equal to the 100-N weight of the bag.
And if there are four ropes holding it up, then the sum of
the four tensions is 100N. If the ropes have been carefully
adjusted to share the load equally, then the tension is 25N
in each rope.
It was estimated, according to the United States Energy Information Administration, that the United States still consumes almost 91% of non-renewable resources as its energy source. In addition, 32 % of it are natural gas, 28 % for petroleum and crude oil, and 21 % for coal power.
The acceleration of gravity on Jupiter is listed as <em>24.79 m/s²</em> .
That's roughly 2.53 times its value on Earth. So if you weigh, let's say,
130 pounds on Earth, then you would weigh about 328 pounds on Jupiter.
E) No. Ollie will shine for 30 Billion years but is only 10,000 LY from Earth.
F) No. Cosmo will shine for 3 Million years but is 10 Billion LY from Earth.
G) Yes. Ollie is only 10.000 LY away but will shine for 30 Billion years.
Ga) No. Stars such as Cosmo shine for 3 Million years.
Gb) If Cosmo was also 3 Million LY away we would see it now.
Answer:
755.37 N
Explanation:
We are given that
Mass of venus=
Radius=
m
Mass of human=
We know that the gravitational force between two bodies

Where G=Gravitational constant=
Using the formula
The magnitude of the gravitational force exerted by Venus on the human=
The magnitude of the gravitational force exerted by Venus on the human=F=